
1-1

On the Cell Probe Complexity of
Dynamic Membership

or
Can We Batch Up Updates in External Memory?

Jan. 17, 2010

Ke Yi and Qin Zhang

Hong Kong University of Science & Technology

SODA 2010

2-1

The power of buffering

For numerous dynamic data structure problems in external memory,
updates can be buffered.

Buffer tree [Arge 1995]

Logarithmic method [Bentley 1980] + B-tree

2-2

The power of buffering

For numerous dynamic data structure problems in external memory,
updates can be buffered.

Buffer tree [Arge 1995]

Logarithmic method [Bentley 1980] + B-tree

problem update query cache-oblivious

stack O(1/b) � trivial

queue O(1/b) � trivial

priority-queue O(1
b
logb n) � [Arge et. al. STOC 02]

predecessor O(1
b
logn) O(logn) trivial

range-sum

range-reporting O(b
ε

b
logn) O(logb n) [Brodal et. al. this SODA]

. . .

b: size of a block/cell (in words)

3-1

How about Dictionary and Membership?

Knuth, 1973: External hashing
Expected average cost of an operation is 1 + 1/2Ω(b), provided
the load factor α is less than a constant smaller than 1. (truly
random hash function)

Dictionary and membership (selected)

Data structures like Arge’s Buffer tree:

Update = O(b
ε

b
logn), Query = O(logb n).

3-2

How about Dictionary and Membership?

Knuth, 1973: External hashing
Expected average cost of an operation is 1 + 1/2Ω(b), provided
the load factor α is less than a constant smaller than 1. (truly
random hash function)

Dictionary and membership (selected)

Data structures like Arge’s Buffer tree:

Update = O(b
ε

b
logn), Query = O(logb n).

Question: can we improve the amortized update cost
to o(1) in external memory, without sacrificing the
query speed by much?

4-1

A long-time folklore conjecture in external memory
community: (explicitly stated by Jensen and Pagh, 2007)

tu must be Ω(1) if tq is required to be O(1)

The conjecture

tu: expected amortized update cost

tq: expected average query cost

4-2

A long-time folklore conjecture in external memory
community: (explicitly stated by Jensen and Pagh, 2007)

tu must be Ω(1) if tq is required to be O(1)

The conjecture

Our small step: ≤ 1.1

tu: expected amortized update cost

tq: expected average query cost

5-1

Problems

Membership: Maintain a set S ⊆ U with |S| ≤ n.
Given an x ∈ U , is x ∈ S? Yes or No.

Dictionary: If x ∈ S, return associated info,
otherwise say No. Often assumes “indivisibility”.

Objective: Tradeoff between update cost tu and query cost tq

Two of the most funda-
mental data structure
problems in computer
science!

6-1

The computational model

The cell probe model [Yao 1981] with a content
preserving cache

A data structure is a collection of b-bit cells

Cost of an operation: # of cells read/changed

A cache of m-bits; probing the cache is free

6-2

The computational model

The cell probe model [Yao 1981] with a content
preserving cache

A data structure is a collection of b-bit cells

Cost of an operation: # of cells read/changed

A cache of m-bits; probing the cache is free

This is essentially the external memory model.

6-3

The computational model

The cell probe model [Yao 1981] with a content
preserving cache

A data structure is a collection of b-bit cells

Cost of an operation: # of cells read/changed

A cache of m-bits; probing the cache is free

The cell size b ranges from 1 to log u up to nε.

Our results hold for arbitrary b, though they are more
meaningful for large b’s

This is essentially the external memory model.

6-4

The computational model

The cell probe model [Yao 1981] with a content
preserving cache

A data structure is a collection of b-bit cells

Cost of an operation: # of cells read/changed

A cache of m-bits; probing the cache is free

The cell size b ranges from 1 to log u up to nε.

Our results hold for arbitrary b, though they are more
meaningful for large b’s

The cache may not affect tq by much, but does affect tu
in almost all common data structures (typically o(1)).

This is essentially the external memory model.

7-1

Let’s go!

Membership

Problem: Maintain a set S ⊆ U .
Given x ∈ U , is x ∈ S?

Goal: tradeoff between tu and tq

Membership tq = 1 + δ
(0 ≤ δ < 1/2) [this paper]

Without indivisibility assumption

Dictionary (successful)

[SPAA 09] Wei, Yi and Zhang

8-1

Outline

A model for queries

8-2

Outline

A model for queries

Deterministic algorithm + random
update sequence

8-3

Outline

A model for queries

Deterministic algorithm + random
update sequence

Can be extended to:

• randomized algorithm

• the case with error

8-4

Outline

A model for queries

Deterministic algorithm + random
update sequence

Can be extended to:

• randomized algorithm

• the case with error

Future work

9-1

Preliminaries

U = {0, 1, . . . , u− 1}: universe. |U | = u.

m: size of cache. In bits.

b: size of one cell. In bits.

n: total number of inserted elements.

S: set of elements we are maintaining. |S| ≤ n

9-2

Preliminaries

U = {0, 1, . . . , u− 1}: universe. |U | = u.

A very mild assumption

u ≥ Ω(n) ≥ Ω(mb)

m: size of cache. In bits.

b: size of one cell. In bits.

n: total number of inserted elements.

S: set of elements we are maintaining. |S| ≤ n

10-1

The model

Query x

M

ψM (x)

πM (x) = 0

BπM (x)

otherwise

{
1, x ∈ S;
0, x 6∈ S.

cell selector

cache content of cell
πM (x)

query cost: 0

disk

10-2

The model

Query x

M

ψM (x)

πM (x) = 0

BπM (x)

otherwise

fM,BπM (x)
(x)

 1, x ∈ S;
0, x 6∈ S;
∗, unknown.

{
1, x ∈ S;
0, x 6∈ S.

cache

query cost: 0

query cost: 1
query cost: ≥ 2 disk

10-3

The model

Query x

M

ψM (x)

πM (x) = 0

BπM (x)

otherwise

fM,BπM (x)
(x)

D(x) =

{
ψM (x), if πM (x) = 0;
fM,BπM (x)

(x), otherwise.

cache

disk

10-4

The model

Query x

M

ψM (x)

πM (x) = 0

BπM (x)

otherwise

fM,BπM (x)
(x)

D(x) =

{
ψM (x), if πM (x) = 0;
fM,BπM (x)

(x), otherwise.

Families of functions
{π}, {ψ}, {f} are fixed

cache

disk

10-5

The model

Query x

M

ψM (x)

πM (x) = 0

BπM (x)

otherwise

fM,BπM (x)
(x)

D(x) =

{
ψM (x), if πM (x) = 0;
fM,BπM (x)

(x), otherwise.

cache

M

M ′

B1

B′
1

B2 B3

B′
2 B′

3

Bd

B′
d

pre

post

disk

During an update

10-6

The model

Query x

M

ψM (x)

πM (x) = 0

BπM (x)

otherwise

fM,BπM (x)
(x)

D(x) =

{
ψM (x), if πM (x) = 0;
fM,BπM (x)

(x), otherwise.

cache

M

M ′

B1

B′
1

B2 B3

B′
2 B′

3

Bd

B′
d

free cost 1 if Bj 6= B′
j

pre

post

disk

During an update

11-1

Framework of the proof

During the insertion sequence,
1. neglect first σn elements,
2. divide the rest into rounds; each contains s elements.

We focus on (implicit) queries at the end of each round.

11-2

Framework of the proof

During the insertion sequence,
1. neglect first σn elements,
2. divide the rest into rounds; each contains s elements.

We focus on (implicit) queries at the end of each round.

Let Bpre
i and Bpost

i be the states of cell i at the
beginning and the end of a round R.

Cells i having Bpre
i 6= Bpost

i must be modified in round R.

R (s updates)

Bpre
i Bpost

i

11-3

Framework of the proof

During the insertion sequence,
1. neglect first σn elements,
2. divide the rest into rounds; each contains s elements.

We focus on (implicit) queries at the end of each round.

Let Bpre
i and Bpost

i be the states of cell i at the
beginning and the end of a round R.

Cells i having Bpre
i 6= Bpost

i must be modified in round R.

We try to show that during each round:

at least Ω(s) cells i have Bpre
i 6= Bpost

i .

−→ amortized update cost is Ω(1)

R (s updates)

Bpre
i Bpost

i

12-1

High level ideas of the proof (focus on 1 round)

1. The cache alone cannot answer too many queries.
Intuition: 2m �

(
u
ε·n
)

Consider queries at the final snapshot of a round.

12-2

High level ideas of the proof (focus on 1 round)

1. The cache alone cannot answer too many queries.
Intuition: 2m �

(
u
ε·n
)

2. At any time ≥ Ω(n) insertions, # of x “D(x) = ∗” is small.
Reason: by the constraint tq ≤ 1.1

Consider queries at the final snapshot of a round.

answer is unknown
after 1 disk probe

For a fixed cache state M

12-3

High level ideas of the proof (focus on 1 round)

1. The cache alone cannot answer too many queries.
Intuition: 2m �

(
u
ε·n
)

2. At any time ≥ Ω(n) insertions, # of x “D(x) = ∗” is small.
Reason: by the constraint tq ≤ 1.1

3 (because of 2). Cell selector π(·) used has to be balanced.

Intuition: otherwise the data structure will not be correct,

under a random insertion sequence w.h.p.

Consider queries at the final snapshot of a round.

answer is unknown
after 1 disk probe

Let αi = |{x | π(x) = i}|/u. π(·) is balanced if
there are not too many αi ≥ Ω

(
b
n

)

For a fixed cache state M

12-4

High level ideas of the proof (focus on 1 round)

1. The cache alone cannot answer too many queries.
Intuition: 2m �

(
u
ε·n
)

2. At any time ≥ Ω(n) insertions, # of x “D(x) = ∗” is small.
Reason: by the constraint tq ≤ 1.1

3 (because of 2). Cell selector π(·) used has to be balanced.

Intuition: otherwise the data structure will not be correct,

under a random insertion sequence w.h.p.

1 + 3 ⇒ 4. In a round, inserted elements’ query paths go to
many different cells after probing the cache.

Consider queries at the final snapshot of a round.

answer is unknown
after 1 disk probe

For a fixed cache state M

13-1

High level ideas of the proof (cont.)

5. Ω(s) cells have to change.

Intuition: new elements are chosen randomly from U . For cell i,
no matter what Bpre

i is, if {f
M,B

post
i

(x) | πM (x) = i} contains

few “∗”, then Bpre
i 6= Bpost

i with high probability.

13-2

High level ideas of the proof (cont.)

Finally,

• (2) – (5) hold with high probability
(
1− e−Ω(n)

)
,

therefore hold for all 2m states of M w.h.p.

• Total cost per round is Ω(s)

• Amortized cost per insertion is at least

Ω(s) · (1− σ)n/s · 1/n ≥ Ω(1).

5. Ω(s) cells have to change.

Intuition: new elements are chosen randomly from U . For cell i,
no matter what Bpre

i is, if {f
M,B

post
i

(x) | πM (x) = i} contains

few “∗”, then Bpre
i 6= Bpost

i with high probability.

13-3

High level ideas of the proof (cont.)

Finally,

• (2) – (5) hold with high probability
(
1− e−Ω(n)

)
,

therefore hold for all 2m states of M w.h.p.

• Total cost per round is Ω(s)

• Amortized cost per insertion is at least

Ω(s) · (1− σ)n/s · 1/n ≥ Ω(1).

5. Ω(s) cells have to change.

Intuition: new elements are chosen randomly from U . For cell i,
no matter what Bpre

i is, if {f
M,B

post
i

(x) | πM (x) = i} contains

few “∗”, then Bpre
i 6= Bpost

i with high probability.

Finished

14-1

Latest results

Membership tq = 1 + δ
(0 < δ < 1)

General Membership

General Hash

Hashing (successful)
assume indivisibility

14-2

Latest results

Membership tq = 1 + δ
(0 < δ < 1)

General Membership

General Hash

Hashing (successful)
assume indivisibility

Very recently with Elad Verbin, we proved
this conjuecture (even more): If tu ≤ 0.99,
then tq is required to be Ω(logb logn

n
m).

• A strong dichotomy result:

Hash or Buffer-tree !

• Completely different techniques

15-1

Futher work

We still cannot handle fast updates.

e.g. if tu = O(1/b), tq = Ω(nε)?

15-2

Futher work

We still cannot handle fast updates.

e.g. if tu = O(1/b), tq = Ω(nε)?

Lower bounds of other dynamic problems in the external
memory.

e.g., for union-find, need super-log query time
if we want to batch up the updates?

Call for new techniques?

15-3

Futher work

We still cannot handle fast updates.

e.g. if tu = O(1/b), tq = Ω(nε)?

Lower bounds of other dynamic problems in the external
memory.

e.g., for union-find, need super-log query time
if we want to batch up the updates?

Call for new techniques?

Can we simplify the complicated combinatorial proof?

Use, e.g., encoding arguments like Pǎtraşcu-Viola.

16-1

The End

T HANK YOU

Q and A

