11

On the Cell Probe Complexity of
Dynamic Membership
or
Can We Batch Up Updates in External Memory?

Ke Yi and Qin Zhang
Hong Kong University of Science & Technology

SODA 2010
Jan. 17, 2010

The power of buffering

O For numerous dynamic data structure problems in external memory,
updates can be buffered.

O Buffer tree [Arge 1995]
O Logarithmic method [Bentley 1980] + B-tree

2-2

The power of buffering

O For numerous dynamic data structure problems in external memory,

updates can be buffered.

O Buffer tree [Arge 1995]
O Logarithmic method [Bentley 1980] + B-tree
problem update query cache-oblivious
stack O(1/b) / trivial
queue O(1/b) / trivial
priority-queue | O(3 log, n) / [Arge et. al. STOC 02]
predecessor O(slogn) | O(logn) trivial
range-sum
range-reporting O(% logn) | O(log, n) | [Brodal et. al. this SODA]
b: size of a block/cell (in words)

3-1

How about Dictionary and Membership?

O Dictionary and membership (selected)

O Knuth, 1973: External hashing
Expected average cost of an operation is 1 + 1/29(6), provided
the load factor « is less than a constant smaller than 1. (truly
random hash function)

O Data structures like Arge's Buffer tree:
Update = O(% logn), Query = O(log, n).

3-2

How about Dictionary and Membership?

O Dictionary and membership (selected)

O Knuth, 1973: External hashing
Expected average cost of an operation is 1 + 1/29(6), provided
the load factor « is less than a constant smaller than 1. (truly
random hash function)

O Data structures like Arge's Buffer tree:
Update = O(% logn), Query = O(log, n).

O Question: can we improve the amortized update cost
to o(1) in external memory, without sacrificing the
query speed by much?

4-1

The conjecture

A long-time folklore conjecture in external memory
community: (explicitly stated by Jensen and Pagh, 2007)

t, must be Q(1) if ¢, is required to be O(1)

t.: expected amortized update cost

tq: expected average query cost

4-2

The conjecture

A long-time folklore conjecture in external memory
community: (explicitly stated by Jensen and Pagh, 2007)

t, must be Q(1) if ¢, is required to be O
Our small step: < 1.1

t.: expected amortized update cost

tq: expected average query cost

5-1

Problems

Membership: Maintain a set S C U with |S| < n.
Givenanxz €U, isxz € S7 Yes or No.

Dictionary: If x € S, return associated info,
otherwise say No. Often assumes “indivisibility” .

Objective: Tradeoff between update cost ¢,, and query cost ¢,

Two of the most funda-
mental data structure

problems in computer
science!

6-1

The computational model

O The cell probe model [Yao 1981] with a content
preserving cache

O A data structure is a collection of b-bit cells
O Cost of an operation: # of cells read/changed

O A cache of m-bits; probing the cache is free

6-2

The computational model

O The cell probe model [Yao 1981] with a content
preserving cache

O A data structure is a collection of b-bit cells
O Cost of an operation: # of cells read/changed

O A cache of m-bits; probing the cache is free

O This is essentially the external memory model.

6-3

The computational model

O The cell probe model [Yao 1981] with a content
preserving cache

O A data structure is a collection of b-bit cells

O Cost of an operation: # of cells read/changed

O A cache of m-bits; probing the cache is free

O This is essentially the external memory model.

O The cell size b ranges from 1 to logu up to n°.

Our results hold for arbitrary b, though they are more
meaningful for large b's

6-4

The computational model

O The cell probe model [Yao 1981] with a content
preserving cache

O A data structure is a collection of b-bit cells

O Cost of an operation: # of cells read/changed

O A cache of m-bits; probing the cache is free

O This is essentially the external memory model.

O The cell size b ranges from 1 to logu up to n°.

Our results hold for arbitrary b, though they are more
meaningful for large b's

& The cache may not affect ¢, by much, but does affect ¢,
in almost all common data structures (typically o(1)).

7-1

Let's gol

Membership

Problem: Maintain aset S C U.
GivenxcU,isx € §?

Goal: tradeoff between ¢,, and 7,

Membership t, =1+ 0
(0 <0 < 1/2) [this paper]

Without indivisibility assumption

Dictionary (successful)
[SPAA 09] Wei, Yi and Zhang

Outline

9 A model for queries

Outline

9 A model for queries

o Deterministic algorithm + random
update sequence

Outline

9 A model for queries

o Deterministic algorithm + random
update sequence

Can be extended to:
e randomized algorithm

e the case with error

Outline

9 A model for queries

o Deterministic algorithm + random
update sequence

Can be extended to:
e randomized algorithm

e the case with error

O Future work

9-1

Preliminaries
o U={0,1,...,u—1}: universe. |U| = u.

0 m: size of cache. In bits.
b: size of one cell. In bits.

n: total number of inserted elements.

0O S: set of elements we are maintaining. |S| < n

9-2

Preliminaries
o U={0,1,...,u—1}: universe. |U| = u.

0 m: size of cache. In bits.
b: size of one cell. In bits.

n: total number of inserted elements.

0O S: set of elements we are maintaining. |S| < n

0 A very mild assumption

O u>Qn)>Q(md)

The model

query cost: 0

x €S;
x & 8.
Query x
~Sa
otherwise
- By ()
M R
cache content of cell
T (T)
disk

10-1

The model

query cost: 0

x €S
x & 8.
Query x
~Sa
otherwise
—> B

M
cache
1, €S,

)

fM,BWM(m)(x) 0, x¢&5;

x, unknown.

query cost: 1)
query cost: > 2 disk

10-2

7TM<27)

10-3

The model

Query x
~Sa
otherwise
Cache\/
7TM(m)
D(z) = Vo (@), i mar (@) =07 gl
fmB,, . (x), otherwise.

7TM<27)

The model

Families of functions

V() {m}, {v},{f} are fixed
Query x
~Sa
otherwise
BT('M (CB)
Cache\ /
7TM(m)
Dlz) = { fMB, () (), otherwise. >

10-4

10-5

|
During an update

The model

pre M | B1| Ba| Bg| ®°° By
post| M B, B, B[*== | B,
Query x 0
~Sa
otherwise
Brys ()
CaChe\ /
7T]\4($)
D(z) = Vo (@), i mar (@) =07 gl
fm.B, (@), otherwise.

|
During an update

The model

pre | M |B1| B2 B3| *°° By

$ free $ cost 1 if B, # B;.

post[M" | BT B[B| *+* | B
Query x 0
~Sa
otherwise
Bﬂ'M(aﬁ)
CaChe\ /
7TM(m)
D(z) = Vo (@), i mar (@) =07 gl
fmB,, . (x), otherwise.

10-6

Framework of the proof

O During the insertion sequence,
1. neglect first on elements,
2. divide the rest into rounds: each contains s elements.

We focus on (implicit) queries at the end of each round.

111

Framework of the proof

O During the insertion sequence,

1. neglect first on elements,
2. divide the rest into rounds: each contains s elements.

We focus on (implicit) queries at the end of each round.

O Let BY™ and BfOSt be the states of cell 7 at the
beginning and the end of a round R.

t
BPI‘G BPOS
b VA |

R (s updatels) |

O Cells i having BP*® # BP°*" must be modified in round R.

11-2

Framework of the proof

O During the insertion sequence,

1. neglect first on elements,
2. divide the rest into rounds: each contains s elements.

We focus on (implicit) queries at the end of each round.

O Let BY™ and BfOSt be the states of cell 7 at the
beginning and the end of a round R.

t
BPI‘G BPOS
b VA |

R (s updatels) |

O Cells i having BP*® # BP°*" must be modified in round R.

We try to show that during each round:
at least)(s) cells i have BP'® # BP°",
— amortized update cost is (2(1)

11-3

High level ideas of the proof (focus on 1 round)

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries.
Intuition: 2™ < ()

u
€1

12-1

12-2

High level ideas of the proof (focus on 1 round)

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries.
Intuition: 2™ < ()

u
€EN
For a fixed cache state M

2. At any time > €(n) insertions, # of x "D(x) = *k is small.

answer is unknown
after 1 disk probe

Reason: by the constraint {, < 1.1

12-3

High level ideas of the proof (focus on 1 round)

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries.
Intuition: 2™ < ()

u
€EN
For a fixed cache state M

2. At any time > €(n) insertions, # of x "D(x) = *k is small.

answer is unknown
after 1 disk probe

Reason: by the constraint {, < 1.1

3 (because of 2). Cell selector 7(-) used has to be balanced.

Intuition: otherwise the data structure will not be|correct,
under a random insertion sequence w.h.p.

Let a; = |[{z | 7(x) = i}|/u. w(-) is balanced if
there are not too many «; > (2 (%)

12-4

High level ideas of the proof (focus on 1 round)

Consider queries at the final snapshot of a round.

1. The cache alone cannot answer too many queries.
Intuition: 2™ < ()

u
€EN
For a fixed cache state M

2. At any time > €(n) insertions, # of x "D(x) = *k is small.

answer is unknown
after 1 disk probe

Reason: by the constraint {, < 1.1

3 (because of 2). Cell selector 7(-) used has to be balanced.

Intuition: otherwise the data structure will not be correct,
under a random insertion sequence w.h.p.

1 + 3 = 4. In a round, inserted elements’ query paths go to
many different cells after probing the cache.

High level ideas of the proof (cont.)

5.)(s) cells have to change.

Intuition: new elements are chosen randomly from U. For cell 7,
no matter what B} is, if {f,, grost(2) | mar(x) = i} contains

few “x", then BP*® # BP°*" with high probability.

13-1

13-2

High level ideas of the proof (cont.)

5.)(s) cells have to change.

Intuition: new elements are chosen randomly from U. For cell 7,
no matter what B} is, if {f,, grost(2) | mar(x) = i} contains

few “x", then BP*® # BP°*" with high probability.
Finally,

e (2) = (5) hold with high probability (1 — =),
therefore hold for all 2" states of M w.h.p.

e Total cost per round is €2(s)

e Amortized cost per insertion is at least
Q(s)- (1 —0o)n/s-1/n > Q(1).

13-3

High level ideas of the proof (cont.)

5.)(s) cells have to change.

Intuition: new elements are chosen randomly from U. For cell 7,
no matter what B} is, if {f,, grost(2) | mar(x) = i} contains

few “x", then BP*® # BP°*" with high probability.
Finally,

e (2) = (5) hold with high probability (1 — =),
therefore hold for all 2" states of M w.h.p.

e Total cost per round is €2(s)

e Amortized cost per insertion is at least

Qs) - (1 —o)n/s-1/n = Q(1). Finished

14-1

| atest results

General Membership

Hashing (successful)

assume indivisibility (0<d<1)

General Hash

Membership t;, =1+ 9

14-2

| atest results

General Membership

Very recently with Elad Verbin, we proved

this conjuecture (even more): If £, < 0.99,

then , is required to be Q(logy ., 7).

General Hash

m

e A strong dichotomy result:

Hash or Buffer-tree !

e Completely different techniques

Hashing (successful)

N Membership t;, =149
assume indivisibility

(0<d<1)

Futher work

O We still cannot handle fast updates.
e.g. ift, =0(1/b), t, = Q(n)?

15-1

Futher work

O We still cannot handle fast updates.
e.g. ift, =0(1/b), t, = Q(n)?

O Lower bounds of other dynamic problems in the external
memory.

e.g., for union-find, need super-log query time
if we want to batch up the updates?

Call for new techniques?

15-2

Futher work

O We still cannot handle fast updates.
e.g. ift, =0(1/b), t, = Q(n)?

O Lower bounds of other dynamic problems in the external
memory.

e.g., for union-find, need super-log query time
if we want to batch up the updates?

Call for new techniques?

0 Can we simplify the complicated combinatorial proof?

Use, e.g., encoding arguments like Patrascu-Viola.

15-3

The End

THANK YOU

Q and A

