
An Optimal Dynamic Interval Stabbing-Max Data Structure?∗

Pankaj K. Agarwal† Lars Arge‡ Ke Yi§

Abstract

In this paper we consider the dynamic stabbing-max prob-

lem, that is, the problem of dynamically maintaining a set

S of n axis-parallel hyper-rectangles in
� d , where each rect-

angle s ∈ S has a weight w(s) ∈
�
, so that the rectangle

with the maximum weight containing a query point can be

determined efficiently. We develop a linear-size structure

for the one-dimensional version of the problem, the interval

stabbing-max problem, that answers queries in worst-case

O(log n) time and supports updates in amortized O(log n)

time. Our structure works in the pointer-machine model of

computation and utilizes many ingredients from recently de-

veloped external memory structures. Using standard tech-

niques, our one-dimensional structure can be extended to

higher dimensions, while paying a logarithmic factor in

space, update time, and query time per dimension. Fur-

thermore, our structure can easily be adapted to external

memory, where we obtain a linear-size structure that answers

queries and supports updates in O(logB n) I/Os, where B is

the disk block size.

1 Introduction

In this paper we consider data structures for the
stabbing-max problem (also sometimes called the rect-
angle intersection with priorities problem). That is, the
problem of dynamically maintaining a set S of n axis-
parallel hyper-rectangles in � d , where each rectangle
s ∈ S has a weight w(s) ∈ � , so that the rectangle with
the maximum weight containing a query point can be
determined efficiently. This problem has numerous ap-
plications in many areas, including databases and net-
working; see e.g. [1, 9, 12] and the references therein.

∗The first author is supported by US National Science Founda-
tion (NSF) grants CCR-00-86013, EIA-98-70724, EIA-01-31905,
and CCR-02-04118, and by a grant from the U.S.–Israel Bina-
tional Science Foundation, and the last two authors by NSF grants
EIA–9972879, CCR–9984099, EIA–0112849, and INT–0129182
and by a Rømer Scholarship from the Danish National Science
Research Council.

†Department of Computer Science, Duke University, Durham,
NC 27708, USA. Email: pankaj@cs.duke.edu

‡Department of Computer Science, University of Aarhus,
Aarhus, Denmark. This work was done while the author was
at Duke University. Email: large@daimi.au.dk

§Department of Computer Science, Duke University, Durham,
NC 27708, USA. Email: yike@cs.duke.edu

We are mainly interested in the one-dimensional ver-
sion of the problem, the interval stabbing-max problem,
for which we develop an optimal structure.

Previous work. Because of its many applications,
the stabbing-max problem has been studied exten-
sively in several communities, including the algorithms,
database and networking communities.

For the interval stabbing-max problem, if deletion
of intervals is not allowed, then a linear-size balanced
search tree on the interval endpoints can be augmented
so that queries and insertions can both be supported
in O(log n) time in the (internal memory) pointer-
machine model [13]. In the external memory model [2],
relevant when processing massive datasets and therefore
often considered in the database literature, a similar
linear-size data structure with O(logB n) I/O query
and insertion time is also known [14]; here B is the
number of elements that can be transfered between disk
and main memory in one I/O (internal computation is
ignored). The problem becomes considerably harder
when deletions are allowed. Intuitively, deletions are
hard because after deleting a maximal weight interval,
all the remaining intervals are candidates for being a
maximal interval; while performing an insertion, the
new interval is the only new candidate. However, by
modifying interval trees [5, 8] one can obtain linear-size
internal and external structures that support general
updates in O(log n) time (resp. O(logB n) I/Os), but
require O(log2 n) time (resp. O(log2

B n) I/Os) to answer
a query [1, 9]. Recently, Kaplan et al. [9] improved
the query bound in the internal memory model to the
optimal O(log n) time at the cost of increasing the
deletion time to O(log n log logn). A similar improved
structure is not known in the external memory model.
If any two input intervals are either disjoint or nested,
Kaplan et al. [9] improved the deletion time to O(log n).
They posed the existence of a data structure with
a similarly improved bound for an arbitrary set of
intervals as a major open problem.

Using standard techniques based on segment trees,
the one-dimensional stabbing-max structures can be ex-
tended to higher dimensions, while paying a logarith-
mic factor in space, update and query time or I/O
per dimension [1, 9]. This leads to an O(n log n)-size

structure in � 2 that supports queries and insertions in
O(log2 n) time and deletions in O(log2 n log logn) time
in internal memory, and an O(n logB n)-size structure
supporting queries in O(log3

B n) I/Os and updates in
O(log2

B n) I/O in external memory. In external mem-
ory, Agarwal et al. [1] developed an alternative struc-
ture in � 2 using O((n/B) logB logB n) space that an-
swers queries using O(log5

B n) I/Os. The structure
supports deletions in O(log2

B n) I/Os and insertions in
O(log2

B n · logM/B logB n) I/Os, where M is the size
of the main memory. They also developed a linear-
size static structure supporting queries in O(log4

B n)
I/Os. In internal memory, Kaplan et al. [9] developed
an improved structure for nested rectangles that uses
O(n logn) space and supports queries and updates in
O(log n) and O(log2 n) time, respectively.

Our results. The main result of this paper is
a linear-size data structure for the (general) interval
stabbing-max problem in the pointer-machine model
that answers queries and supports updates (insertions
as well as deletions) in O(log n) time. The query bound
is worst-case while the update bounds are amortized.
Thus we settle the open problem posed by Kaplan et
al. [9]. Furthermore, our structure can easily be adapted
to external memory, where we obtain an O(n/B)-size
structure that answers queries and supports updates in
O(logB n) I/Os. Finally, as previously, our structures
can be extended to higher dimensions using the stan-
dard segment-tree techniques, while paying a logarith-
mic factor in space, update time, and query time or I/O
per dimension.

The main idea we use to improve the deletion time
to O(log n) is to increase the fan-out of the base tree
of the multi-level structure of Kaplan et al. [9] from
2 to Θ(

√
logn). The use of large non-constant fan-

out base trees is common in external memory, where
a fan-out of Θ(B1/c) is often used for some constant
c ≥ 1. Large fan-out trees have also been used in several
efficient internal structures (e.g. [7, 11]). The advantage
of a larger fan-out base tree is, of course, that it has
small height (O(log n/ log logn) in our case), which
allows us to use more time (O(log logn) in our case) to
query or update secondary structures attached to the
nodes of a root-leaf path in the base tree. However,
the increased fan-out also introduces many difficulties,
which we overcome by utilizing ideas from several
recently developed external structures [3–5]. We believe
that the idea of utilizing techniques from external
memory structures is of independent interest and may
lead to improvement of other internal structures.

While our interval stabbing-max structure settles
the open problem posed by Kaplan et al. [9], it remains

an open problem if our structure is truly optimal. Our
structure is optimal in the sense that any sequence of
n operations take Θ(n logn) time, and it is the first
data structure that attains this optimal bound for a
sequence of mixed operations. A query obviously has to
take Ω(logn) time in the comparison model. By using
an adversary argument [6], one can also show that the
insertion cost has to Ω(logn) if a query is required to
take O(log n) time. However to our knowledge, known
lower bounds do not exclude the existence of a structure
with O(log n) query and insertion bounds but with an
o(logn) deletion bound. We conjecture that such a
structure does not exist.

The paper is organized as follows. In Section 2 we
first describe our structure with the assumption that the
endpoints of all intervals belong to a fixed set of O(n)
points. This allows us to disregard rebalancing of the
base tree in our multi-level structure. The assumption is
then removed in Section 3 and describe how to rebalance
the base tree. Finally we mention some extensions to
our basic structure in Section 4.

2 Fixed Endpoint-set 1D Structure

In this section we describe our interval stabbing-max
structure, assuming that the endpoints of all intervals
that are ever in the structure belong to a fixed set
of O(n) points. For simplicity, we assume that no
two intervals have the same endpoint, and we do not
distinguish between an interval and its weight; for
example, we use “maximum interval” to refer to the
interval with the maximum weight.

2.1 The base tree As earlier structures, our struc-
ture is based on the interval tree [8]. An interval tree
on a set of n intervals consists of a balanced binary base
tree T on the O(n) endpoints of the intervals, with the
intervals stored in secondary structures of the nodes of
T . With each node v of T we associate a range σv : the
range σv associated with a leaf z consists of the interval
formed by two consecutive endpoints; if v is an internal
node with w and z as it children, then σv = σw ∪ σz.
We also associate a point xv with each internal node v,
which is the common boundary point of σw and σz . An
input interval s ∈ S is associated with the highest node
v such that xv ∈ s (i.e., xp(v) 6∈ s, where p(v) denotes
v’s parent). The subset Sv ⊆ S of intervals associated
with v is stored in two secondary structures, namely,
a dynamic height-balanced tree sorted by the left end-
points of intervals in Sv , and another sorted by the right
endpoints. At each node of these secondary trees we
store the maximum interval in the subtree rooted at
that node. Using these two secondary trees, the max-
imum interval in Sv containing a query point q can

be found in (logn) time. Thus a stabbing-max query
for a query point q can be answered in O(log2 n) time
by searching down T for the leaf z such that q ∈ σz ,
computing the maximum interval in Sv at each node
v along this path, and then returning the maximum of
these O(log n) intervals. An interval s can be inserted
or deleted in O(log n) time by first finding the node v of
T with which s is associated and then updating the two
secondary trees associated with v. The query time can
be improved to O(log n log logn), at the cost of increas-
ing the update time to O(log n log logn), using dynamic
fractional cascading [10].

Intuitively, the idea in the interval max-stabbing
structure of Kaplan et al. [9] is to replace the secondary
structures of the interval tree with structures that can
answer a max-stabbing query in O(1) time, leading to
an O(log n) query bound. At a node v, let Lv be the set
of intervals in

⋃

Su, where u is an ancestor of v, whose
left endpoints lie in the range associated with the left
child of v. The set Rv is defined similarly with respect
to right endpoints. In the structure by Kaplan et al. [9],
Lv and Rv are implicitly stored in secondary structures
at v, such that the maximum interval in them can be
found in O(1) time. By following the path to the leaf z
such that σz contains the query point, a stabbing-max
query can now be answered in O(log n) time. However,
a deletion now requires O(log n log logn) time rather
than the desired O(log n) time, since when deleting an
interval O(log logn) time is required to update each of
the O(log n) secondary structures on a search path in
T . See the original paper for details [9].

Our structure. Intuitively, the idea in our
structure is to increase the fan-out of the base
tree T to logc n, thereby decreasing its height to
O(log n/ log logn). This allows us to spend O(log log n)
time at each node on a search path and still obtain an
O(log n) bound. Of course, many complications need to
be overcome to make this idea work.

More precisely, our interval max-stabbing data
structure consists of a balanced base tree T over n/ logn
leaves with fan-out f =

√
logn; each leaf contains logn

consecutive interval endpoints. The f children of a node
v are organized in a balanced tree such that they can
be searched in O(log f) = O(log logn) time. As in the
binary case, we associate a range σv with each node v of
T ; σv is the union of all ranges associated with the chil-
dren v1, v2, . . . , vf of v. The range σv is divided into f
sub-ranges by the ranges associated with the children of
v, which we refer to as slabs. We refer to the boundaries
of subranges as slab boundaries and use bi(v) to denote
the slab boundary between σvi−1

and σvi
. Furthermore,

we define a multislab to be a continuous range of slabs,

that is, σv [i : j] =
⋃j

l=i σvl
is the multislab consisting

of slabs σvi
through σvj

, for 1 ≤ i ≤ j ≤ f . There are
(

f
2

)

= O(log n) multislabs in v. For example, in Figure 1
node v has five slabs σv1

, . . . , σv5
, which are separated

by six boundaries b1(v), . . . , b6(v); note that b1(v) and
b6(v) are also slab boundaries in the parent p(v) of v.
The interval s spans the multislab σv [2 : 3].

Intervals in S are associated with the nodes of T
in a way similar to the binary case: An interval s is
associated with v if s crosses at least one slab boundary
of v but none of the boundaries at the parent of v; if an
interval has both endpoints in a leaf z, i.e., it does not
cross any slab boundaries, it is stored at z. As earlier,
let Sv ⊆ S be the subset of intervals associated with
v. Since the secondary structures of v, described below,
may contain a superset of Sv , we also store the intervals
Sv in a doubly linked list at v. We keep pointers
between an interval in Sv and the leaves containing its
two endpoints. Note that overall the base tree T and
the lists occupy O(n) space. It remains to describe the
secondary structures associated with each node v.

First consider the set Sz of intervals associated with
a leaf z of T . For a query point q ∈ σz , we can easily
answer a stabbing-max query on Sz in O(log n) time
simply by scanning the O(|Sz |) = O(log n) intervals in
Sz. Similarly, we can also delete an interval from Sz or
insert an interval into Sz in O(log n) time. Thus we do
not need secondary structure for the intervals associated
with the leaves of T and will not consider these intervals
in the following.

Now consider the set Sv of intervals associated with
one of the O(n/ log3/2 n) internal nodes v of T . As in
the external interval tree by Arge and Vitter [5], we
imagine partitioning each such interval s ∈ Sv into two
or three pieces: Suppose s has its left endpoint in slab
σvi

and right endpoint in slab σvj
with j > i + 1. We

break s at bi+1(v) and bj(v) to obtain a left interval
sl in σvi

, a middle interval sm spanning the multislab
σv [i + 1, j − 1] (the largest multislab spanned by s),

v1 v2 v3 v4 v5

v

σv2
σv4

σv5
σv1

b1(v)

σv

b3(v) b4(v) b5(v) b6(v)

s

b2(v)

sm sr

σv3

sl

Figure 1: An internal node v in the base tree T .

and a right internal sr in σvj
. If j = i + 1 we break

s at bi+1(v) (= bj(v)) to obtain sl and sr. Refer to
Figure 1 where s is broken into sl in σv1

, sm spanning
σv [2 : 3], and sr in σv4

. We use Sl
v , Sm

v and Sr
v to denote

the set of left, middle, and right intervals obtained
from the intervals in Sv , respectively. Furthermore, let
Sl =

⋃

v∈T S
l
v , Sr =

⋃

v∈T S
r
v , and Sm =

⋃

v∈T S
m
v

be the sets of all left, right, and middle intervals,
respectively. In the following we describe separate
secondary structures associated with the internal nodes
of T for storing Sl, Sm, and Sr. Although we construct
a separate secondary structure for each node v ∈ T , the
secondary structure associated with v is not constructed
on Sl

v, S
m
v , S

r
v . Instead, we use a different criterion,

described below, to decide the subsets of Sl, Sm, Sr on
which we build the secondary structure associated with
v. By querying the secondary structures of a root-leaf
path, interval stabbing-max queries can be answered on
each of these sets in O(log n) time. This leads to an
overall query bound of O(log n), since the answer to
such a query is either found in a leaf or in Sl, Sm, and
Sr. Globally, the secondary structures for each of the
sets Sl, Sr and Sm can also be updated in O(log n)
time, leading to an O(log n) update bound since an
update involves either updating a leaf or updating S l,
Sr, and possibly Sm. In Section 2.2 below we describe
the secondary structures for Sm. In Section 2.3 we
describe the structures for Sl. The structures for Sr are
symmetric to those for Sl and thus are not described.

2.2 Middle intervals Sm The secondary structures
storing Sm consist of a structure � v for each internal
node v of T . The structure � v stores exactly the set
Sm

v . We first describe � v and how it can be queried
and updated. Then we describe the global query and
update procedures.

� v structure. The � v structure consists of
O(log n) max-heaps: A multislab max-heap for each of
the O(log n) multislabs, as well as a slab max-heap for
each of the

√
logn slabs. The multislab max-heap for

multislab σv [i : j] contains all intervals in Sm
v that ex-

actly span σv [i : j]. The slab max-heap for slab σvl
con-

tains the maximum interval from each of the O(log n)
multislab max-heaps corresponding to multislabs that
span σvl

(i.e., the multislab max-heaps corresponding
to σv [i : j] for 1 ≤ i ≤ l ≤ j ≤ f). Since each interval in
Sm

v is stored in exactly one multislab max-heap, all these
multislab heaps use linear space in total. Each slab
max-heap uses O(log n) space for a total of O(log3/2 n)

space. Thus overall � v uses O(|Sm
v | + log3/2 n) space.

To construct � v , we first compute for each interval in
Sm

v the multislab it belongs to. This can easily be done

in O(log logn) time. Then we construct each of the
heaps. Since constructing a heap takes linear time, the
total construction cost is O(|Sm

v | log logn+ log3/2 n).
Given a query point q ∈ σv , we find the maximum

interval in Sm
v containing q as follows: We first find the

slab that contains q and then we report the maximum
interval stored in the corresponding slab max-heap.
This takes O(log logn) time. To insert or delete an
interval in Sm

v we first update the relevant multislab
max-heap in O(log n) time; if the maximum interval
of the multislab max-heap changes, we also update
the O(

√
logn) affected slab max-heaps in O(

√
logn ·

log logn) = O(log n) time.

Lemma 2.1. The set of middle intervals Sm
v of a node

v can be stored in a data structure � v using O(|Sm
v | +

log3/2 n) space, such that a stabbing-max query can
be answered in O(log logn) time. The structure can

be constructed in O(|Sm
v | log logn + log3/2 n) time and

updated in O(log n) time.

Querying and updating Sm. It is easy to see
that all we need to do to answer a stabbing-max query
q on Sm is to query the � v structures of all the
O(log n/ log logn) internal nodes v on the path from the
root of T to the leaf containing q, and then return the
maximum of these interval. Since we use O(log logn)
time in each node on the path (Lemma 2.1), we answer a
query in O(log n) time in total. To perform an insertion
or deletion on Sm we simply search down T for the
relevant node v in O(log n) time. Then we update � v

in O(log n) time (Lemma 2.1).
Finally, note that even though the size of � v

is O(|Sm
v | + log3/2 n), the overall size of all the � v

structures is O(n) since the number of internal nodes

in T (and thus � v structures) is O(n/ log3/2 n).

Lemma 2.2. Using linear space O(n), the set Sm of
middle intervals can be stored in secondary structures
of T so that stabbing-max queries can be answered and
updates can be performed in O(log n) time.

2.3 Left intervals Sl Like the secondary structures
for the middle intervals, the secondary structures for
the left segments consist of a structure � v associated
with each internal node v of T . However, unlike for the
middle intervals, the structure � v is not constructed
on the set Sl

v . Instead, similar to the Kaplan et al.
structure [9], it stores some of the intervals that belong
to

⋃

u S
l
u, where the union is taken over the ancestors

of v. We first describe a static version of � v and then
show how to make it dynamic.

}
}

}
γ

v4 v5

u3 = v

v3 = w

α
β

u

�
w and below

�
v

�
u

q

u1 u4 u5u2

v1 v2

Figure 2: Answering a stabbing-max query on S l using the � v structures.

The static structure. For any two nodes u, v of
T , where u is an ancestor of v, let

Ψ(u, v) = {sl | s ∈ Su and s’s left endpoint is in σv},

i.e., Ψ(u, v) is the set of intervals associated with u with
left endpoint in the slab associated with v. For example,
consider part of the base tree shown in Figure 2, where
u1, u2, . . . are the children of u and v1, v2, . . . are the
children of v. The interval α belongs to the sets Ψ(u, v)
and Ψ(u, v2), while the interval β belongs to Ψ(v, w).
By definition, Ψ(u, u) = Sl

u and Ψ(u, v1), . . . ,Ψ(u, vf)

form a partition of Ψ(u, v), i.e., Ψ(u, v) =
⋃f

i=1 Ψ(u, vi).
Further define the interval ψ(u, v) = maxΨ(u, v). Thus
we have

ψ(u, v) = max
1≤i≤f

ψ(u, vi).(2.1)

Next, let p(0)(v) = v and define p(k)(v) =
p(p(k−1)(v)) for k ≥ 1. Let

Φ(v) =
⋃

k≥2

Ψ(p(k)(v), v),

i.e., Φ(v) is the set of intervals that belong to a
proper ancestor of the parent of v (i.e., they cross
the right boundary of σp(v)) and that have their left
endpoints inside σv . For example, in Figure 2, the
interval α belongs to Φ(v2), while γ belongs to Φ(v1)
and Φ(v). Note that an interval of Sl may belong to
O(log n/ log logn) of the Φ(v)’s. Finally, let the interval
φ(v) = maxΦ(v). By definition, we have

φ(v) = max
k≥2

ψ(p(k)(v), v).(2.2)

The secondary structure � v is used to find in time
O(log logn) the maximum interval in Φ(v1)∪· · ·∪Φ(vi),
for any 1 ≤ i ≤ f . We first show how this leads to a
query procedure with an overall cost of O(log n), and

then describe how to implement � v . For a query point
q, we follow a path from the root of T to the leaf z such
that q ∈ σz , and perform a query on the � v structures of
each internal node v on the path. At a node v, if q ∈ σvi

,
i.e., vi is the child of v on the path from the root to the
leaf z, we query the � v structure to find the maximum
interval in Φ(v1)∪· · ·∪Φ(vi−1). For instance in Figure 2,
when we visit u, the two intervals in Φ(u1) ∪ Φ(u2) are
considered since u3 = w is the next node to be visited;
similarly the intervals in Φ(v1) ∪ Φ(v2) are considered
when we query the structure � v . When we reach the
leaf z, we simply scan the O(log n) intervals whose
left endpoints are stored at z and find the maximum
interval. Since we spend O(log logn) time at each of the
O(log n/ log logn) internal nodes visited, this procedure
takes O(log n) time in total. That it indeed returns
the maximum interval in Sl follows from the following
lemma.

Lemma 2.3. Just before a node v ∈ T has been visited,
we have found the maximum left interval among all
intervals of Sl that contain the query point q except
those whose left endpoints lie inside σv.

Proof. The lemma is obviously true if v is the root of the
base tree T . Assume that the lemma is true for some
internal node v, and let vi be the child of v to be visited
next. We will prove that the lemma is still true at vi,
i.e., that after visiting v we have found the maximal left
interval among intervals that contain q and have left
endpoint outside σvi

. By induction, we have already
considered all intervals with left endpoints outside σv,
so we only need to show that our query on � v returns the
maximum interval among those that have left endpoints
inside σv but not σvi

. Consider any such interval sl in
Sl

u for some node u. If u is v or any of its descendants,
then sl cannot contain the query point: it is completely
outside σvi

since its left endpoint is outside σvi
. So

u can only be one of v’s ancestors. For such an sl to

contain the query point, it must span σvi
completely.

In other words, it must have its left endpoint inside the
multislab σv [1 : i− 1]. By the definition of Ψ(u, vk) and
Φ(vk), sl must belong to Φ(v1) ∪ · · · ∪ Φ(vi−1), and the
lemma follows.

We now describe the � v structures that can be used
to compute the maximal interval in Φ(v1)∪· · ·∪Φ(vi) for
any 1 ≤ i ≤ f . Since one interval may appear in many
of the Ψ(u, v) sets, we cannot afford to store them or
the Φ(v) sets explicitly. However, we can store φ(v)
intervals, since the number of such intervals is exactly
equal to the number of nodes in T . For now let us
assume that φ(v), for all v ∈ T , have been computed—
we will describe how to maintain them when we describe
how to update Sl. Let v1, . . . , vf be the children of
a node v ∈ T . Then � v is a tournament tree on
φ(v1), . . . , φ(vf), that is, a binary tree with f leaves
whose ith leftmost leaf stores φ(vi). Each internal node
of � v stores the maximum of the intervals stored at
the leaves of the subtree rooted at v. If ξ is an internal
node of � v with ζ, η as its two children, then the interval
stored at ξ is the maximum of the two intervals stored
at ζ and η. Given any 1 ≤ i ≤ f , the maximum interval
in Φ(v1) ∪ · · · ∪ Φ(vi) can be determined by selecting
the maximum interval among the intervals stored at the
left children of the nodes on the path from the root of
� u to its ith leftmost leaf. Since φ(vj) = max Φ(vj),
this interval, the maximum of φ(v1), . . . , φ(vi), is the
maximal interval in Φ(v1) ∪ · · · ∪ Φ(vi). The query
is answered in O(log logn) time, as � v has height
O(log f) = O(log logn).

Lemma 2.4. Using linear space O(n), the set S l of left
intervals can be stored in secondary structures of T so
that stabbing-max queries can be answered in O(log n)
time.

The dynamic structure. In order to make � v

dynamic, we need to maintain the φ(v) as well as ψ(u, v)
intervals during insertions and deletions of left intervals.
Note that there are O(n/ log logn) ψ(u, v) intervals
since T has O(n/ logn) nodes and each node v has
O(log n/ log logn) ancestors u. We need two additional
linear-size data structures at the nodes of T to update
� v ’s efficiently:

(i) for an internal node u,
�

u stores the ψ(u, v) inter-
vals for all descendants v of u; and

(ii) for an internal or a leaf node v ∈ T , � v stores the
ψ(u, v) intervals for all ancestors u of p(v).

For an internal node u,
�

u is a tree that has the
same structure as the subtree Tu of T rooted at u. Thus

there is a bijection between the nodes of
�

u and Tu,
and abusing the notation slightly we will use the same
letter to denote a node of Tu and the corresponding node
of

�
u. A node v ∈ �

u stores the interval ψ(u, v). In
other words, the root of

�
u stores ψ(u, u), and ψ(u, vi)

is stored in a child of the node storing ψ(u, v) in
�

u

if and only if vi is a child of v in T . It follows from
(2.1) that

�
v is simply a tournament tree with fan-out

f . We organize the f intervals in the children of each
internal node v of

�
u in a small binary tournament tree

(effectively obtaining a binary tournament tree). We
also store a small tournament tree at each leaf z of�

u on the intervals in Ψ(u, z), the interval of Sl
u whose

left endpoints lie in σz. We sort Ψ(u, z) in increasing
order of the left endpoints of its intervals. The ith leaf
of the tournament tree stores the ith interval of (the
sorted) Ψ(u, z). This leaf tournament tree can be used
to maintain the maximum interval of Ψ(u, z). Note that
each of the small tournament trees (in internal nodes
and leaves) has size O(log n) and height O(log logn).
At each leaf of

�
u that stores ψ(u, z), we also keep a

pointer to the leaf of
�

p(u) that stores ψ(p(u), z). These
pointers will help us when we do rebalancing of the base
tree in Section 3. Let | �

u| denote the size of
�

u. Then
∑

u∈T | �
u| = O(n) because each ψ(u, v) is stored only

once and each interval of Sl is stored in exactly one of
the leaf tournament trees.

The structure � v of each node v of the base tree T is
simply a max-heap on ψ(u, v) for all (proper) ancestors
u of the parent of v. It follows form (2.2) that the root
of � v stores φ(v). We keep pointers between the two
copies of ψ(u, v) in a

�
u tree and an � v heap. Again,

∑

v∈T | � v | = O(n) because each ψ(u, v) is stored once.
We are now ready to describe how to update � v ,

�
v,

and � v . Let sl be a left interval to be inserted or
deleted, and suppose the left endpoint of sl lies in the
range σz associated with a leaf z of T . We first identify
the node u of T such that sl ∈ Sl

u. Among all the�
structures, the sl update can only affect

�
u since

intervals in Sl
u are stored only in

�
u. Furthermore,

only O(log n/ log logn) ψ(u, v) intervals in
�

u can be
affected, namely, at nodes along the path from u to the
leaf z in

�
u. We update

�
u by inserting or deleting sl in

the small tournament tree stored at the leaf z. If ψ(u, z),
the interval stored at the root of the tournament tree,
changes, then we update ψ(u, p(z)) at the parent p(z) of
z in

�
u. This way the update may propagate up along

a path of
�

u of length O(log n/ log logn). Since each
of these updates involves updating a small tournament
tree in O(log f) = O(log logn) time, we use a total of
O(log n) time to update

�
u. Next we update each of

the O(log n/ log logn) updated ψ(u, v) intervals in the
relevant � v structures. Since the ψ(u, v) intervals in

�
u

and � v are linked together and since an update of a � v

heap can be performed in O(log(log n/ logn logn)) =
O(log logn) time, we can perform these updates in
O(log n) time in total. Finally, if the maximum interval
φ(v) of any � v changes during the above updates, we
update the value of φ(v) in the tournament tree � p(v)

at the parent of v. These are the only updates needed
on the � v structures. Since such an update can also be
performed in O(log logn) time, the total update time is
O(log n).

Lemma 2.5. Using linear space O(n), the set S l of left
intervals can be stored in secondary structures of T so
that updates and stabbing-max queries can be performed
in O(log n) time.

3 General 1D Structure

In the previous section we assumed that the set of
endpoints of input intervals was fixed, and thus the
structure of the base tree T was fixed. In this section
we sketch how to remove this restriction, that is, how to
update T (insert/delete endpoints) before an insertion
of an interval in the secondary structures and after a
deletion of an interval from the secondary structures.

Note that deletions can be handled in a standard
way using global rebuilding: When deleting an end-
point we simply mark it as deleted in the relevant leaf
of T . After n/2 deletions we discard the old struc-
ture, completely rebuild the base tree T without the
deleted endpoints, and insert the intervals from the sec-
ondary structures of the old structure in the secondary
structure of the new structure one by one. We can re-
build T in O(n) time and perform the Θ(n) insertions in
O(n logn) time. Thus the amortized cost of an endpoint
deletion is O(log n).

In order to handle insertions we will the base tree
T as a weight-balanced B-tree with branching factor f
and leaf parameter logn [5]. The weight of a node v
of T , denoted as nv, is the number of endpoints stored
at the leaves of the subtree rooted at v. The weight of
each leaf is between 1

2 logn and 2 logn, and the weight of
each internal node (except for the root) on level l (leaves
are on level 0) is between 1

2f
l logn and 2f l logn. It is

easy to see that the condition on the weights implies
that the fan-out of each internal node (except for the
root) is between f/4 and 4f , and that the root has fan-
out between 2 and 4f [5]. The slight variation in the
number of endpoints in a leaf and the fan-out of the
internal nodes of T does not affect any of the argument
we used when discussing the secondary structures in
the previous section, i.e., we can still query and update
the secondary structures in O(log n) time (Lemmas 2.2
and 2.5).

v

b

v′′v′

bi+1(p(v))

bi+1(p(v))bi(p(v))

bi(p(v))
b

Figure 3: Node v is split into two nodes v′ and v′′.

After an insertion of an endpoint in a leaf z of the
weight-balanced tree T , the weight constraint of the
nodes on the path from z to the root of T may be
violated, that is, the weight of a node v on level l of
the tree before the insertion may be nv = 2f l logn. To
rebalance the tree, we split v along a slab boundary b
into two nodes v′ and v′′ of roughly equal weight f l logn
(more precisely, the weight of each of the two new nodes
is between (f l − 2f l−1) logn and (f l + 2f l−1) logn); b
becomes a new slab boundary at p(v) between bi(p(v))
and bi+1(p(v)) for some i. Refer to Figure 3. The
split obviously not only requires updating the secondary
structures at v (v′ and v′′), but also the nodes on the
path from v to the root of T . The secondary structures
of the other nodes in the tree are unaffected by the split.
Below we sketch how to perform these updates, i.e.,
the split of v, in O(nv log logn) time. Since the new
nodes v′ and v′′ will not split until Θ(nv) insertions
have been performed below them (their weight has
increased to 2f l log n), the amortized cost of a split is
O(log logn). Since one insertion increases the weights of
O(log n/ log logn) nodes on a path of T , the amortized
cost of an insertion is O(log n).

The above discussion assumes that the parameter f
is fixed, which in not really the case because f =

√
logn.

However, we can easily fix f for Θ(n) updates at a time
and periodically rebuild the whole structure with an
updated f (similar to the way deletions are performed
using global rebuilding).

The Sv lists. We first consider how the lists storing
the intervals Sv associated with each node v in T are
affected by the split. It is easy to see that only the lists
storing Sv , Sv′ , Sv′′ and Sp(v) need to be updated when
v splits into v′ and v′′. We distinguish between intervals
in Sv that intersect b and that do not. Intervals of the
first kind need to be moved to Sp(v), and intervals of
the second kind need to be distributed into either Sv′

or Sv′′ . If an interval s ∈ Sv intersects b, we insert
it at the end of the list storing Sp(v). If s lies to the
left (resp. right) of b, we insert it into the list storing
Sv′ (resp. Sv′′). Refer to Figure 4. Altogether we can
update the lists in O(|Sv |) = O(nv) time.

b
bi+1(p(v))

σv

σv′

bi(p(v))

σv′′

Figure 4: Update the Sv lists: Solid intervals are added
to Sp(v); dotted intervals are distributed into Sv′ and
Sv′′ .

The � structures. When v splits and intervals
in Sv are distributed among Sv′ , Sv′′ , and Sp(v), we
need to update the structures � v′ , � v′′ , and � p(v)

storing middle intervals Sm
v′ , Sm

v′′ , and Sm
p(v). Since Sm

u

is unaffected for all other nodes u in T , so is � u for all
other nodes u.

Since Sm
v′ and Sm

v′′ can easily be computed in a
simple scan of Sv′ and Sv′′ , the secondary structures

� v′ and � v′′ can be constructed in O(|Sv′ | log logn +

|Sv′′ | log logn + log3/2 n) time (Lemma 2.1). Since

|Sv′ | + |Sv′′ | ≤ nv and nv = Ω(log3/2 n) for an internal
node of v of T , this cost is O(nv log logn).

Unlike � v′ and � v′′ , we cannot simply reconstruct
the � p(v) structure from Sp(v) since its size can be
Ω(nv). Therefore we only make the necessary changes
to � p(v) . First note that the intervals that moves from
Sv to Sp(v) because of the split do not generate new
middle intervals in Sm

p(v) (since they do not span a slab

in P (v)). However, the addition of the new boundary
b in p(v) may still lead to the addition of intervals to
Sm

p(v): The intervals in Sp(v) with left endpoints between

bi(p(v)) and b and right endpoints between bi+1(p(v))
and bi+2(p(v)), as well as those with left endpoints

between bi−1(p(v)) and bi(p(v)) and right endpoints
between b and bi+1(p(v)), which did not span a slab
before the split, now span a slab and thus generate
middle intervals in Sm

p(v). The two bottom intervals in
Figure 5 are examples of such intervals. Since all such
intervals have one endpoint in σv , we can easily find
them in O(nv) time by scanning the endpoints stored
in the subtree of T rooted at v.

bi(p(v)) bi+1(p(v))b bi+2(p(v))

Figure 5: Update the structure � p(v) .

Recall that � p(v) consists of O(f2) multislab max-
heaps and O(f) slab max-heaps. The addition of the
new boundary b results in the addition of a number
of new multislabs (with b as one of their boundaries)
and thus in the addition of new multislab max-heaps:
The new middle intervals computed above need to be
inserted into two new multislab max-heaps correspond-
ing to the two new multislabs defined by boundaries
bi(p(v)) and b and by boundaries b and bi+1(p(v)).
Since these max-heaps contain O(nv) intervals they
can be constructed in O(nv) time. Apart from these
two new multislabs, the addition of b also results in
new multislabs defined by boundaries b and bj(p(v)) for
j = i + 2, . . . , f , and by boundaries bk(p(v)) and b, for
k = 1, . . . , i − 1. This may result in some of the mid-
dle intervals in Sm

p(v) being extended to the left or right,
which in turn results in the need for a split of some
of the multislab max-heaps: Intervals in the max-heap
of the multislab defined by boundaries bi+1(p(v)) and
bj(p(v)), for j = i+2, . . . , f , need to be distributed into
two max-heaps corresponding to multislabs defined by
boundaries b and bj(p(v)) and by boundaries bi+1(p(v))
and bj(p(v)); intervals in the max-heap of the multi-
slabs defined by boundaries bk(p(v)) and bi(p(v)), for
k = 1, . . . , i − 1, need to be distributed into two max-
heaps corresponding to multislab defined by boundaries
bk(p(v)) and bi(p(v)) and by boundaries bk(p(v)) and b.
For example, before the split the middle parts of the top
four intervals in Figure 5 all span the same multislab de-
fined by the boundaries bi+1(p(v)) and bi+2(p(v)); after
the addition of b the middle parts of the solid inter-
vals are extended and span the multislab defined by the
boundaries b and bi+2(p(v)), while the dotted intervals

are unaffected. The max-heaps of all multislabs that
span both or neither of bi(p(v)) and bi+1(p(v)) remain
unchanged. All the distributions and constructions of
multislab max-heaps can be performed in O(nv) time,
since all affected intervals have at least one endpoint in
σv , and thus the total size of all these heaps is O(nv).

Finally consider the slab max-heaps. At most
O(f) multislab max-heaps were modified in the above
process. Each of these modifications may affect all
the O(f) slab max-heaps. Thus we can maintain
the slab max-heaps with O(f2) updates during the
split process. Since each slab max-heap is of size
O(f2), we can perform these updates in O(f 2 log f2) =
O(log n log logn) = O(nv log logn) time. Thus alto-
gether we have updated the middle interval structures

� v′ , � v′′ , and � p(v) in O(nv log logn) time.

The � , � and
�

structures. Finally, we consider
the changes needed in � u , � u , and

�
u at each node

u of T , as v splits into v′ and v′′. Recall that � u is
simply a tournament tree on the O(f) φ(ui) intervals
corresponding to u’s children ui; that � u is a max-
heap on the intervals ψ(p(k)(u), u) for k ≥ 2, with
its maximum interval being φ(u); and that

�
u is a

tournament tree with the same structure as the subtree
of T rooted at u, storing all the intervals ψ(u,w)’s for
all the descendants w of u. As described in Section 2.3
when we discussed how to update these structures
during insertions and deletions of left intervals, we
can focus on the changes needed for the

�
structures:

Whenever an interval in a node of a
�

structure is
changed, the resulting changes can easily be made on
the relevant � and � structures in O(log logn) time.
As we will see shortly, the number of intervals changed
in all the

�
structures is O(nv), thereby implying that

the overall time spent in updating � and � structures
is O(nv log logn). Below we first consider how to
construct the

�
v′ structure; the

�
v′′ structure can be

constructed similarly. Then we consider the updates to�
p(v), as some intervals move from Sv to Sp(v) due to

the split. Finally we consider the structural changes to
the

�
u structures at all nodes u of T .

We construct
�

v′ in a bottom-up manner. First we
construct its leaves by scanning Sv′ and assigning each
interval s to the leaf z containing its left endpoint, and
then constructing the small tournament tree in each leaf
(recall that interval ψ(v′, z) of the leaf corresponding to
the leaf z in T is simply the maximal interval in the root
of this tournament tree). After this

�
v′ is constructed

bottom-up in linear time since its basically a tourna-
ment tree. Since each leaf contains O(log n) intervals,
we use O(nv′ log logn) time in total to construct all the
leaves. Since there are O(nv′/ logn) nodes in

�
v′ , the

bottom-up construction takes O(nv′/ logn) time.
As a result of the movement of left intervals from

Sl
v to Sl

p(v); we have already collected these intervals

(the solid intervals in Figure 4) earlier when we updated
the Sv lists. Each such moved interval sl needs to be
inserted in the tournament tree in the leaf of

�
p(v) cor-

responding to the leaf z of T containing the left end-
point of sl. We first locate the leaf of

�
p(v) contain-

ing ψ(p(v), z) by following the pointer from the leaf of�
v where sl originally belong to, and then insert sl in

the tournament tree in this leaf of
�

p(v). Since this
tournament tree has size O(log n), the insertion takes
O(log logn) time. There are at most O(nv) such inter-
vals that we need to move, so updating all the leaves of�

p(v) takes O(nv log logn) time overall. After this we
can update all the affected nodes in

�
p(v) bottom-up.

Since
�

p(v) has O(nv · f/ logn) = O(nv) nodes, the cost
of this bottom-up update is also O(nv).

Finally let us consider the structural changes to be
performed on the

�
u structures for all nodes u ∈ T .

Recall that
�

u has the same structure as the subtree
of T rooted at u. Thus for each of v’s ancestors u,
the node in

�
u corresponding to v, storing ψ(u, v),

needs to be replaced by two new nodes storing ψ(u, v′)
and ψ(u, v′′). There are O(log n/ log logn) such nodes.
All other

�
u’s do not contain a node corresponding to

v, hence not affected. Since all the ψ(u, v) intervals
stored in the affected nodes are also stored in the heap
� v , we can locate these nodes easily. Each node of�

u contains a small tournament tree, so we split this
tournament tree to construct the two new nodes in

�
u.

Since each tournament tree has size O(log n), a split
takes O(log logn) time, for a total of O(log n/ log logn)·
O(log logn) = O(log n) = O(nv) time. Note that if v
is a leaf of T , we also need to reattach the pointers
between the newly created leaves of the

�
u trees. This

can be done in time linear to the number of such new
leaves, which is O(log n/ log logn).

Altogether, we have updated all the left interval
structures in O(nv log log n) time as needed.

Putting everything together, we conclude the fol-
lowing.

Theorem 3.1. There exists a linear-size data structure
for storing a set of n intervals so that stabbing-max
queries can be answered in O(log n) time worst-case and
updates can be performed in O(log n) time amortized.

4 Extensions

In this section we discuss some extensions of our one-
dimensional interval max-stabbing structure.

External memory structures. Our internal
memory interval max-stabbing structure can easily be
adapted to external memory by choosing the right base
tree parameters: We let each leaf of the base tree
contain B logB n endpoints, and let the fan-out f be
max{

√

logB n,
√
B}. We also change the fanout of all

the tournament trees to B such that a tournament
tree on K elements can be updated and queried in
O(logB K) I/Os. We omit the details of the construc-
tion since they are very similar to the internal memory
structure.

Theorem 4.1. There exists an external memory data
structure for storing a set of n intervals of size
O(n/B) so that stabbing-max queries can be answered
in O(logB n) I/Os worst-case and updates can be per-
formed in O(logB n) I/Os amortized.

Higher dimensions. Our one-dimensional struc-
tures can be extended to higher dimensions in a stan-
dard way using segment trees [9]. This adds an extra
O(log n) factor to space, update time, and query time
for each dimension.

Theorem 4.2. There exists an O(n logd−1 n) size data
structure for storing a set of n axis-parallel hyper-
rectangles in � d so that stabbing-max queries can be
answered in O(logd n) time worst-case and updates can
be performed in O(logd n) time amortized.

Similarly, the external structure can also be ex-
tended to higher dimensions using standard tech-
niques [1]. Details will appear in the full paper.

Theorem 4.3. There exists an O(n
B logd−1

B n) space
external data structure for storing a set of n axis-parallel
hyper-rectangles in � d so that stabbing-max queries can
be answered in O(logd

B n) I/Os worst-case and updates
can be performed in O(logd

B n) I/Os amortized.

References

[1] P. K. Agarwal, L. Arge, J. Yang, and K. Yi, I/O-
efficient structures for orthogonal range max and stab-
bing max queries, Proc. European Symposium on Al-

gorithms, Lecture Notes in Computer Science, 2832,
2003, Springer Verlag, pp. 7–18.

[2] A. Aggarwal and J. S. Vitter, The Input/Output com-
plexity of sorting and related problems, Communica-

tions of the ACM, 31 (1988), 1116–1127.
[3] L. Arge, V. Samoladas, and J. S. Vitter, On two-

dimensional indexability and optimal range search in-
dexing, Proc. 18th ACM Symposium on Principles of

Database Systems, 1999, pp. 346–357.
[4] L. Arge and J. Vahrenhold, I/O-efficient dynamic pla-

nar point location, Computational Geometry: Theory

and Applications, 29 (2004), 147–162.
[5] L. Arge and J. S. Vitter, Optimal external memory

interval management, SIAM Journal on Computing,
32 (2003), 1488–1508.

[6] G. S. Brodal, S. Chaudhuri, and J. Radhakrishnan,
The randomized complexity of maintaining the mini-
mum, Nordic Journal of Computing, 3 (1996), 337–351.

[7] B. Chazelle, Filtering search: a new approach to query-
answering, SIAM J. Comput., 15 (1986), 703–724.

[8] H. Edelsbrunner, A new approach to rectangle intersec-
tions, part I, Int. J. Computer Mathematics, 13 (1983),
209–219.

[9] H. Kaplan, E. Molad, and R. E. Tarjan, Dynamic rect-
angular intersection with priorities, Proc. 35th ACM

Symposium on Theory of Computation, 2003, pp. 639–
648.

[10] K. Mehlhorn and S. Näher, Dynamic fractional cascad-
ing, Algorithmica, 5 (1990), 215–241.

[11] C. W. Mortensen, Fully-dynamic two dimensional or-
thogonal range and line segment intersection reporting
in logarithmic time, Proc. 14th ACM-SIAM Sympos.

Discrete Algorithms, 2003, pp. 618–627.
[12] S. Sahni, K. Kim, and H. Lu, Data structures for

one-dimensional packet classification using most spe-
cific rule matching, Proc. 6th International Symposium

on Parallel Architectures, Algorithms, and Networks,
2002, pp. 3–14.

[13] R. E. Tarjan, A class of algorithms that require nonlin-
ear time to maintain disjoint sets, Journal of Computer

and System Sciences, 18 (1979), 110–127.
[14] J. Yang and J. Widom, Incremental computation and

maintenance of temporal aggregates, Proc. IEEE In-

ternational Conference on Data Engineering, 2001,
pp. 51–60.

