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ABSTRACT
Knowledge acquisition (e.g. through labeling) is one of the most

successful applications in crowdsourcing. In practice, collecting

as specific as possible knowledge via crowdsourcing is very use-

ful since specific knowledge can be generalized easily if we have

a knowledge base, but it is difficult to infer specific knowledge

from general knowledge. Meanwhile, tasks for acquiring more spe-

cific knowledge can be more difficult for workers, thus need more

answers to infer high-quality results. Given a limited budget, as-

signing workers to difficult tasks will be more effective for the goal

of specific knowledge acquisition. However, existing crowdsourc-

ing task scheduling cannot incorporate the specificity of workers’

answers. In this paper, we present a new framework for task sched-

uling with the limited budget, targeting an effective solution to

more specific knowledge acquisition. We propose novel criteria for

evaluating the quality of specificity-dependent answers and result

inference algorithms to aggregate more specific answers with bud-

get constraints. We have implemented our framework with real

crowdsourcing data and platform, and have achieved significant

performance improvement compared with existing approaches.
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1 INTRODUCTION
Crowdsourcing [10] has received increasing attention in both academia

and industries. There have been many public crowdsourcing plat-

forms such as Amazon Mechanical Turk and CrowdFlower pro-

viding a labor market for requesters to hire workers to process

various tasks. One of the core problems of crowdsourcing is that

crowdsourcing workers are not always reliable. For instance, some

workers may provide incorrect answers due to lack of expertise and
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in a worse case some spammers may give wrong answers on pur-

pose.As a result, requesters can often get unreliable task answers

from workers. To tackle this problem, requesters usually assign

the same task redundantly to a certain number of workers simul-

taneously. Then the returned answers will be aggregated based

on inference algorithms, such as majority voting, DS (Dawid and

Skene [5]), GLAD [18], Minimax Entropy [21, 23] and etc.

Most state-of-the-art inference algorithms employ minimal error

rate between aggregated answers and the ground truth to measure

the effectiveness. Intuitively, increasing redundancy can reduce

the error rate, and Gao et al. [7] give the upper and lower bounds

under the classic DS model, which measure the limit of methods

no matter how large the redundancy is. However, more redundant

tasks cause more costs. As crowdsourcing budget is always limited,

it is necessary to allocate the budget properly. Intuitively, harder

tasks need more redundancy while easier tasks need less. Thus, we

need proper redundancy for different tasks to attain low error rate

and low costs as well. We call this budgeted task scheduling problem,

where it is necessary to estimate the quality of task answers and

consider the remaining budget dynamically when scheduling tasks

to more workers. In typical budgeted task scheduling problem, a

requester submits a set of tasks together with a certain amount of

budget, and the scheduler uses the budget incrementally by deciding

which tasks to run in each turn until the budget is used up. For

instance, Khetan and Oh [12] and Lahouti and Hassibi [13] present

a crowdsourcing task scheduling to achieve minimal error rate with

the limited budget.

Task scheduling mechanism is of great importance to effectively

solve crowdsourcing problems with budget constraints. However,

traditional task scheduling approaches only estimate the answer

quality of the tasks using error rate as the criterion. For knowledge

acquisition tasks, one of the most common types of crowdsourcing

tasks, it is inappropriate to define result quality just with the error

rate.

Take an image labeling task as an example. Generally, we con-

sider such a task a classification problem.However, classes can be

conceptually organized as a hierarchical taxonomy with the rela-

tions of hypernym and hyponym. For instance, if the object in the

image is walker hound, in traditional error rate view, foxhound or

hound is an error class. But as shown in Figure 1, we know that

walker hound is a breed of foxhound and foxhound is a breed of

hound. Thus we cannot simply treat hound or foxhound as incor-

rect results. Therefore, incorporating the knowledge about such

conceptual relations can effectively improve the evaluation of the

workers’ answers. On the other hand, in crowdsourcing tasks, it
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is expected that the workers can label specific concepts instead of

general ones. Obviously, walker hound is a better choice than the

other two labels in the above example. This is because if we have

the knowledge about walker hound being a breed of foxhound, we
can easily generalize the labeled walker hound as foxhound, but we
cannot generalize foxhound to walker hound. Since the error rate
cannot be used to measure the result quality, existing solutions to

budgeted task scheduling problem cannot be used directly in this

scenario.

In this work, we are concerned with budgeted task scheduling
for crowdsourced knowledge acquisition (BTSK). To solve the BTSK

problem, there are mainly two challenges. The first challenge is

how to measure the performance of inference methods. To address

this challenge, we define two novel performance metrics including

hit rate and coherence along with accuracy to measure the quality

of inference results. The second challenge is how to estimate the

answer quality of each task to determine which tasks should be

assigned to more workers for processing. For that, we design an

adaptive scheduling framework that can automatically determine

which tasks need to solicit more labels, and we provide the qua-

dratic form based estimation methods that can evaluate the answer

quality well using the relations between labels. Meanwhile, we

improve the existing result inference algorithms to incorporate the

new performance metrics in our framework. Then we conducted an

extensive set of real crowdsourcing experiments in CrowdFlower
1

and we have analyzed the behavior of workers in the crowdsourc-

ing process. We also evaluated the performance of the improved

inference algorithms in comparison with the state-of-the-arts.

Our main contributions are listed as follows.

• We are the first to formalize the budgeted task scheduling

for crowdsourced knowledge acquisition problem, and we

define novel criteria to measure the quality of results in

this context.

• We design a model with a heuristic method to address the

BTSK problem with two improved inference algorithms

and quadratic form based estimation methods considering

the relations between labels.

• We conducted a set of real crowdsourcing experiments to

prove the reliability of the criteria and show the advantages

of our methods in comparison with the state-of-the-art

approaches.

The rest of this paper is organized as follows. Section 2 describes

the problem studied in this work and presents three novel metrics of

measuring the quality of the aggregated crowdsourcing results. In

Section 3, we present the framework of our approach and three core

components. And Section 4 describes the experimental evaluation.

In Section 5, we analyze the related work and Section 6 concludes

this work.

2 PROBLEM FORMULATION
In this section, we first formulate the budgeted task scheduling

problem,then introduce two novel performance metrics.

1
https://www.crowdflower.com/
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Figure 1: An example of label taxonomy

2.1 Budgeted Task Scheduling
We consider a typical crowdsourcing process. A requester first gives

the budget B and the task set T = {ti |i = 1, 2, ...,n} which needs to

be labeled. Then the task set is sent to a crowdsourcing platform that

provides a worker setW = {w j |j = 1, 2, ...,m}. For a micro-task ti ,
it needs to be labeled for r times by distinct workers. Here r is called
redundancy usually provided by the requester. If workerw j gives

task ti a label li j from the label domain setD = {xд |д = 1, 2, ...,k},
w j will get the payment p which satisfies

p =
B

rn
. (1)

When the labeling process is finished, we suppose to consume all

the budget and get the labeling results as a matrix Lr =
(
li j

)
n×m

controlled by redundancy r and we fill the label matrix with zeros

when li j is not defined. Finally, we use an inference method denoted

as a function f : Dn×m → Dn
, such as majority voting, to infer

the ground truth label yi for ∀ti ∈ T, and the inferred result is

denoted by ŷi . Then the result set Ŷ = (ŷ1, ŷ2, ..., ŷn ) = f (Lr ) is
returned to the requester and we usually use error rate or accuracy

as the performance metrics denoted as va (Ŷ,Y) to measure the

quality of the inferred results.

However, since that different tasks have different difficulty levels,

setting the same redundancy r to each task is unreasonable for

budget consumption optimization. It brings forth the budgeted task

scheduling problem as follows:

Definition 1 (Budgeted Task Scheduling Problem). We de-
note task set by T = {ti |i = 1, 2, ...,n} with size n , worker set
byW = {w j |j = 1, 2, ...,m} with sizem, and label domain set by
D = {xд |д = 1, 2, ...,k} with size k . Given budget B, payment p per
label, inference method function f (·) and inference performance met-
ric function v(·), the budgeted task scheduling task is to obtain label
matrix LR step by step, determining redundancy ˆR = (r̂1, r̂2, ..., r̂n )
to satisfy

n∑
i=1

r̂i =
B

p
, (2)

where
ˆR = argmax

R
v(f (LR),Y). (3)

In practice, the payment can be variable for different tasks with

various incentive methods and Eq.(2) should be B =
∑
i j r̂ipi j . How-

ever, most crowdsourcing platforms using uniform payment and



incentive method can hardly have coherence performance in dif-

ferent situations. Thus, for simplicity, we use uniform payment

scheme throughout this work.

Intuitively, harder tasks need greater redundancy. So budgeted

task scheduling problem is essentially to estimate the difficulty of a

task, then set greater redundancy for harder tasks. But accurately

estimating task difficulty needs more labels, and it will lead to

less accessible redundancy remaining, which is the main problem

in budgeted task scheduling problem. Moreover, for knowledge

acquisition scenario, how to define “hard” is still a problem. The

performance metric v also needs a proper definition, which will be

discussed in the next section.

2.2 Performance Metrics
In a typical crowdsourcing process, we often use error rate/accuracy

as the inference performance metric. However, it is not suitable

when additional knowledge is incorporated.When alternative labels

have hypernym or hyponym relationships (see Figure 1), before

the discussion, we first formulate the relationship on the taxonomy

tree as a binary function:

M(xд ,xh ) =
{
1 if xд = xh or xд ∈ hypernym(xh )
0 otherwise

, (4)

where functionhypernym(·) follows the definition in Ref. [8]. In our
BTSK problem, for instance in Figure 1, if we assume that the ground

truth is “English foxhound”, traditionally only the label “English

foxhound” provided by a worker is considered correct, and all the

other labels will be treated as errors. Actually the label “Foxhound”

is not totally useless, it is consistent with the correct label “English

foxhound” in the higher level of concepts, thus it is not reasonable

to simply treat it as an error. In light of this characteristic of BTSK

problem, we present a new performance measure called hit rate to
relax the accuracy criterion, using the binary function (4). When a

label is the ground truth or the hypernym of ground truth, we say

it is a hit label which can be correct. The definition of the hit rate
criterion is as follows:

vh (Ŷ,Y) =
1

n

n∑
i=1

M(ŷi ,yi ). (5)

However, hit rate does not tell how well a label is. For knowledge

acquisition, we need to acquire specific knowledge. Thus it is neces-

sary to define the specificity score. Intuitively, the truth label should

be located in a leaf node in the taxonomy tree, which has the largest

specificity score. Following this intuition, we define the specificity
score in the following.

S(xд) =
D(xд)

D(xд) + H (xд)
, (6)

where D(xд) is the length between the label node xд and the root

node defined by:

D(xд) =
{

D(φ(xд)) + 1 if φ(xд) , ∅
1 otherwise

, (7)

where φ(xд) is a function returning the parent node of xд ; and
H (xд) is the maximum length between xд and the hyponym of xд

Crowdsourcing Platform
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No Yes

Knowledge
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Injection
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Budget, tasks

Feedback
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Result
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Figure 2: Knowledge Based Iterative Scheduling Framework

defined by

H (xд) =
{

maxxh ∈ϕ(xд ) H (xh ) + 1 if ϕ(xд) , ∅
0 otherwise

, (8)

where ϕ(xд) is the function returning the children set of xд .

Theorem 1. ∀xд ∈ D, we have S(xд) ∈ (0, 1]. And ∀xh ∈
hypernym(xд), we have S(xh ) < S(xд).

Proof 1. From the definition of function D(·) and H (·), we have
∀xд ∈ D,D(xд) ≥ 1,H (xд) ≥ 0. According to Eq. 6, we can easily
prove that S(xд) ∈ (0, 1]. Then we denote ∀xд ∈ D,φ(xд) = xд′ and
we have xд ∈ ϕ(xд′). According to the definition,we have D(xд′) <
D(xд) and H (xд′) > H (xд). Such that:

S(xд′) =
D(xд′)

D(xд′) + H (xд′)
<

D(xд′)
D(xд′) + H (xд)

<
D(xд)

D(xд) + H (xд)
= S(xд).

(9)

It means S(xд′) < S(xд). Because of the transitivity of hypernym, we
have ∀xh ∈ hypernym(xд), S(xh ) < S(xд).

The properties in the Theorem 1 are very useful for describing

the specificity concept. Using the definition of specificity score, we

can measure how well a label xд fits with the node xh by

MS (xд ,xh ) =
{
S(xд)/S(xh ) ifM(xд ,xh ) = 1

0 otherwise

. (10)

Meanwhile, we present a new performance metric of inference

methods called coherence defined by:

vc (Ŷ,Y) =
1

n

n∑
i=1

MS (ŷi ,yi ). (11)

3 APPROACH DESCRIPTION
In this section, we introduce the knowledge based iterative sched-

uling framework to deal with the BTSK problem. And we elaborate

on three key issues on quality estimation, task selection and result

inference respectively.



Algorithm 1: Knowledge based Iterative Scheduling

Input: B, p, T = {ti }, rmin , rmax ,M , α
Output: Ŷ

1 R initialized by rmin ;

2 S(0) ← initialState(T,R);
3 B ← B − nprmin ;

4 τ ← 1;

5 while B> 0 do
6 E← QualityEstimation(S(τ−1),M);
7 T(τ ) ← TaskSelection(E,R, rmax ,α);
8 R(τ ) ← Crowdsourcinд(T(τ ));
9 S(τ ) ← inputData(R(τ ),S(τ−1));

10 for ti in T(τ ) do
11 ri ← ri + 1;

12 B ← B − p |T(τ ) |;
13 τ ← τ + 1;

14 Ŷ← In f erence(S(τ ));
15 return Ŷ;

3.1 Knowledge Based Iterative Scheduling
Framework

The knowledge based iterative scheduling framework is shown in

Figure 2. A requester first submits the budget and the unlabeled

tasks to the scheduling system. The scheduling process consists of

five steps:

• Initialization: initializing the scheduler with the minimum

redundant labels for each task.

• Answer Collection: collecting and storing the Answers from
crowdsourcing workers.

• Quality Estimation: evaluating the quality of the received

answers when there is budget left.

• Task Selection: determining which tasks should be further

sent out for more labels in next iteration.

• Result Inference: inferring the truth label by aggregating

workers’ answers in the event all the budget has been used up.

The scheduling system interacts with the crowdsourcing plat-

form. Both of them have knowledge base injected to capture the

relationship among alternative labels helping workers and schedul-

ing systemwork better. The details of the crowdsourcing scheduling

framework are shown in Algorithm 1. The input is the total budget

B, payment p per label, task set T, minimum redundancy number

rmin , maximum redundancy number rmax , relation binary func-

tion M (Eq. 4), and the parameter range α , adjusting the ratio of

tasks which need to go another iteration so as to get new labels.

The output is the inferred results of the ground truth of each task.

First, we initialize the State S with rmin labels for each task. Then

we execute the iterations until the budget is used up. Functions

“QualityEstimation” is the implementation of quality estimation

part returned to the estimation score vector E . Function “TaskS-

election” is the implementation of task selection, which returns

the task set T(τ ) for getting one more label in τ -th iteration. And

function “Crowdsourcing” is the process of the crowdsourcing plat-

form to get labels. Function “InputData” is just to input the answer

set R(τ ) from the crowdsourcing platform into the state module

S(τ−1) returned to S(τ ) After iteration, function “Inference” imple-

ments the result inference module to generate the final result for

the requester.

3.2 Quality Estimation
Quality estimation is to compute the quality of workers’ answers

for each task. A straightforward idea is to compute a weight γi j
of label li j , then get the estimation score for task ti with weighted

sum:

ei =
m∑
j=1

γi j . (12)

Considering the measurement of specificity, we can use the speci-

ficity as the weight: γ Si j = S(li j ). If li j = 0, which meansw j did not

give a label to ti , we set S(li j ) = 0 and γ Si j = 0. So we can get a

vector of weight Γi = (γi1,γi2, ...,γim ) for task ti . Meanwhile, we

can consider the confidence that workers have in their answers:

γCi j = Ci j , where Ci j means the confidence of worker w j giving

label to task ti . No label means Ci j = 0. However, we find that

workers have the tendency to give highly specific label while they

show low confidence in doing that, which will be discussed in Sec-

tion 4.1. Thus we can have the weight by combining both of the

two factors: γ SCi j = S(li j )Ci j .
In BTSK problem, if two labels have hypernym or hyponym

relationship, we treat them as a good sign to infer a specific label.

However, if two labels are located in two branches in the taxonomy

tree, such as “Whippet” and “Waller hound” showed in Figure 1, it

will make confusion for inference. With the above consideration,

we propose the quadratic form based estimation score. We define

a matrix A(i) = (aij j′)m×m for ∀ti ∈ T, implementing the relation

between the labels:

aij j′ = M(li j , li j′), (13)

whereM(·, ·) is defined as Eq. (4). Then we have the quadratic form

based estimation score for ∀ti ∈ T:
ei = ΓiA(i)ΓTi , (14)

where the weight of each label is the product of specificity and

confidence. In this way, we think highly of the answer quality with

the labels containing hypernym or hyponym relation, which can

easily reveal specific knowledge in tasks.

3.3 Task Selection
In this step, we need to determine which tasks should go for another

iteration of crowdsourcing. To that end, we are facing a trade-off

between the number of tasks selected for next iteration and the

number of total iterations for processing all the tasks. Then we

introduce a controlling parameter α , which makes the scale of next

iteration as α percent tasks. The details of how to use α to control

it are showed in Algorithm 2.

The input is the evaluation vector E from the evaluation module,

redundancy vector R, maximum redundancy number rmax , range

α . And the output is the task set T containing the tasks going for

another iteration. isTaskValid is to figure out which task is valid

to get another iteration unless it already gets rmax labels. N is the

number tasks for another iteration. In Line 6, we set N to [αn] and



Algorithm 2: Task Selection

Input: E = (e1, e2, ..., en ), R = (r1, r2, ..., rn ), rmax , α
Output: T

1 for i from 1 to n do
2 if ri < rmax then
3 isTaskValid[i] ← 1;

4 else
5 isTaskValid[i] ← 0;

6 N ← min([αn],∑n
i=1 isTaskValid[i]);

7 N ← max(1,N );
8 T ← ∅;
9 I← get the permutation vector of E sorting ;

10 for i from 1 to n do
11 if N ≤ 0 then
12 break;

13 i ′ ← I[i];
14 if isTaskValid[i ′] then
15 T ← T⋃

ti′ ;

16 N ← N − 1;

17 return T;

also make sure that N does not exceed the number of valid tasks.

Then in Line 7, we ensure one task be selected in any iteration.

Finally, we choose the N tasks with the lowest quality scores from

the task set.

3.4 Result Inference
This module aims at inferring the ground truth using some infer-

ence methods, such as majority voting, DS (Dawid and Skene [5]),

GLAD [18], Minimax Entropy [21, 23], and majority voting with

knowledge (MWK) and Simplicity-ability Estimation model with

External Knowledge (SEEK) [8]. In Section 2.2, we have presented

the metric of specificity. On the one hand, a highly specific label

implies a high risk of an incorrect label; on the other hand, a less

specific label does not provide sufficient knowledge although it

usually means a high hit rate. Therefore, we have the following

designs to improve the state-of-the-art methods.

3.4.1 MWK+. In the MWK algorithm [8], the weight of each

label conducts to its hyponym to reveal more specific label. We

set a conduction rate coefficient β ∈ [0, 1] to adjust the transfer

process showed in Line 7 of Algorithm 3. In this algorithm,M is the

relation binary function defined in Eq. (4). Larger conduction rate

β means more intention to get a specific label. Extremely, when

β = 1, it reduces to the MWK method, and when β = 0, it reduces

to the majority voting method or its variant [8].

3.4.2 ProFull. We also propose a probabilistic inference algo-

rithm, which we call ProFull. In probabilistic perspective, the evalu-

ation of ground truth is based on the posterior probability over the

labels. In fact, the probability of ground truth should distribute in

the leaf node for a specific task. But in [8], all labels in label domain

are given by workers. So it will result in the following consequence.

For example in Figure 1, the ground truth is “Walker hound” with

Algorithm 3: Improved Majority Voting with External Knowl-

edge

Input: L = (li j )n×m ,M

Output: Ŷ
1 Initialization:;

2 Worker i’s ability parameter µ
(0)
j ← 1;

3 Score for label xд in task ti as δ
(0)
iд ←

∑
j µ
(0)
j I (li j=xд )∑

д′
∑
j µ
(0)
j I (li j=xд′ )

;

4 for τ from 1 to maxIter do
5 if ability error < tolerance then
6 break;

7 δ ′iд ← δ
(n)
iд +

∑
д′,д βM(д′,д)δ

(n)
iд ;

8 Update δ
(n+1)
iд ←

δ ′iд∑
д′ δ ′iд′

; µ
(n+1)
j ←

∑
i,д δ

(n+1)
iд I (li j=xд )∑
i′,д′ δ

(n+1)
i′д′

;

9 yi = argmaxxд δiд ;

10 return Ŷ;

two workers giving the label “Foxhound” and one worker giving

the label “English foxhound”. “Walker hound” cannot be revealed

by workers so that “Foxhound” is the best label. However, if we can

get the full taxonomy tree, the ground truth should distribute in

leaf nodes. Thus, we present a probabilistic method based on the

full taxonomy tree of labels. We assume that a certain workerw j
has a hit rate parameter πj which means w j labeling a label hits

the ground truth with probability πj . The probability of label li j
over ground truth is formulated as:

P(li j |yi ,πj ) =
{

πj/H (yi ) ifM(li j ,yi ) = 1

(1 − πj )/(k − H (yi )) ifM(li j ,yi ) = 0

. (15)

Then we solve this problem using EM algorithm:

E-step: We compute probability P(yi |L,π ) for ∀yi ∈ D by

P(yi |L,π ) ∝ P(yi )
∏
i
P(li j |yi ,πj ), (16)

where we set P(yi ) is uniform distribution;

M-step: we figure out the parameters π by

π = argmax

π
Q(πold ,π ), (17)

where Q is the standard auxiliary function that

Q(πold ,π ) =
∑
i j

∑
yi ∈D

P(yi |L,πold ) lnP(li j |yi ,πj ). (18)

Let
∂Q
∂πj
= 0, we have

πj =

∑
i
∑
M (li j ,yi )=1 P(yi |L,π

old )∑
i Ii j

, (19)

where Ii j is the indicator variable whether workerw j gives

a label to task ti .

If the distribution of ground truth on leaf nodes are dispersive, the

inference can be hardly reliable. We had better get the hypernym

with higher hit probability, extremely the hit probability of root

node is 1. Thus, we set a parameter σ which is the minimum hit
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rameters respectively

probability of the result we need. Smaller σ means relaxing con-

straints with the aim of inferring more specific labels while larger

σ indicates the priority of hit rate over specificity.

4 EVALUATION
In this section, we present the experimental results. We introduce

the real datawe use and analyze theworkers’ behavior in Section 4.1.

Then about the inference methods, we test the performance of our

MWK+ and ProFull algorithm and compare with other inference

methods in Section 4.2. Next, we conduct a set of experiments on

our scheduling to prove the effectiveness of our quadratic form

scheduling in Section 4.3 and the robustness by range parameter

in Section 4.4. Finally, we come to the budget issue and prove that

our work can make remarkable budget saving in Section 4.5.

4.1 Datasets
We first extract a taxonomy tree from ImageNet [6] with 149 nodes

with “dog” as the root node. We get images form the leaf nodes

of the tree as data for labeling. In total, we get 984 images to im-

plement crowdsourcing labeling tasks in crowdsourcing platform

CrowdFlower
2
. To address the adaptive redundancy problem, we

2
We have released our source code and data:

https://github.com/crowdintelligence/BTSK

get 19 valid labels for each image and 303 workers participated

in the labeling tasks. Meanwhile, we require worker give his or

her confidence along with a label from the taxonomy tree and the

label we require should best describe the image and as specific as

possible.

We compute the statistics on the specificity of 18,696 labels and

their confidence in Figure 3. The distribution of label specificity

mean per task is close to Gaussian distribution but the label speci-

ficity mean per worker is not. It seems that worker tends to give

high specificity label. Meanwhile, the confidence mean of worker

tends to be in the middle. The mean of the product of label speci-

ficity and worker’s confidence for each worker comes to Gaussian

distribution again. It means the high specificity labels with low

confidence are with high probabilities. It proves the usefulness of

product of specificity and confidence from another perspective.

4.2 Evaluation of Result Quality
We compare our method with several other approaches. MV (Ma-

jority Voting) and MWW (Majority With Weight) are the basic

inference in crowdsourcing. MWK (Majority With Knowledge) is

the method presented by Han et al. [8], which incorporates external

knowledge to deal with inference problem in BTSK problem. SEEK

method presented by Han et al. [8] is hard to adjust parameter and

always over time, and DS or Minimax Entropy is proved not fitting

to the BTSK problem. Thus, we do not compare with SEEK, DS

and Minimax Entropy methods. MWK+ is our methods based on

MWK. MWC (Majority With Confidence) uses the confidence as

the weight. ProFull is our probabilistic method using full taxonomy

tree, solved by EM algorithm.

We incorporate two parameters into our inference methods

MWK+ and ProFull respectively, as introduced in Section3.4. The

first parameter is conduction rate β . In the left figure of Figure 4, the
dashed line is the performance of the MWK method, and the solid

line stands for the performance of the MWK+ method. We can see

that the accuracy, coherence, and hitRate of MWK+ are all better

than MWK when β ∈ (0.8, 1). And when β = 1, the performance of

MWK+ is the same as MWK. When β = 0, which means no weight

conduction between labels, MWK+ comes to equal to MWW. The

second one is reliable rate σ . In the right figure of Figure 4, when

the σ increases, the accuracy decreases, and the hit rate increases.
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Figure 5: Performance of inference methods (MWK+:β = 0.8, ProFull:σ = 0.5)

Table 1: Schedulingmethods performance on inference algorithms comparing with no schedulingmethod (rmean = 10, α = 0.5)

Random S-weight C-weight SC-weight QF

Inference Method Uniform vs. Uniform

accuracy 0.170 -4.79% 0.00% -1.80% 1.20% 12.57%
MV coherence 0.340 -2.90% -1.67% -0.85% 0.04% 5.45%

hit rate 0.537 -2.16% -2.08% 0.00% -0.19% 1.89%

accuracy 0.208 -6.98% -1.46% -6.34% -6.34% -13.17%

MWW coherence 0.380 -1.30% -2.32% -4.08% -2.62% -2.61%

hit rate 0.547 0.82% -1.86% -2.60% 0.19% 1.67%

accuracy 0.351 -4.99% 3.19% 2.03% 8.41% 13.62%
MWK coherence 0.393 -2.79% 1.74% 1.84% 5.95% 8.28%

hit rate 0.415 -1.27% 0.25% 1.72% 4.41% 5.64%

accuracy 0.352 -5.06% 2.89% 0.87% 8.09% 12.72%
MWK+ coherence 0.405 -3.72% 0.15% -0.18% 3.72% 5.67%

hit rate 0.436 -2.94% -2.33% -0.70% 0.93% 2.10%

accuracy 0.301 -5.44% 0.68% 0.34% 6.08% 9.46%
MWC coherence 0.364 -4.65% -0.54% -0.68% 2.47% 6.97%

hit rate 0.404 -4.37% -1.51% -1.76% 0.50% 5.28%

accuracy 0.270 -4.32% -4.51% -1.13% 3.01% 9.40%
ProFull coherence 0.389 -1.97% -2.94% -1.30% -0.88% 3.56%

hit rate 0.493 0.74% -1.03% -0.21% -1.65% 1.65%

When σ = 0, hit rate meets to accuracy, meanwhile when σ = 1,

hit rate equals to 1 and accuracy equals to 0 where we need the

most reliable label which is the root label always fitting the task.

Figure 5 shows the performances of six compared methods in

accuracy, coherence, and hit rate. We set β = 0.8 and σ = 0.5 for

MWK+ and ProFull respectively. In accuracy, MWK+ performs best

almost all the time. MWK method also has a good performance in

accuracy, and it performs best when the number of redundancy is

from 8 to 10. In terms of coherence, ProFull performs best when

the number of redundancy is less than 9, and the MWK+ method

performs best when the number of redundancy is larger than 9.

MWK method has a close performance to MWK+ method. But in

hit rate, MWK and MWK+ method performs worse than the others

except MWC method. MWW method performs best and majority

voting is second when the number of redundancy is larger than 8.

When the number is less than 8, ProFull method performs best.

4.3 Effects of Quality Estimation
After the analysis of the inference methods behavior, we implement

the whole scheduling by 6 ways respectively using 6 inference

methods, as shown in Table 1. Each inferencemethod is evaluated by

threemeasures: accuracy, coherence and hit rate.We set appropriate

parameters for MWK+ and ProFull where conduction rate β = 0.8

in MWK+, and reliable rate σ = 0.5 in ProFull.



The budget of all experiments in the table can get 10× 984 labels
for the scheduling to the assignment, which means each experi-

ment has the same redundancy mean 10. The column with title

“Uniform” is the benchmark which has no scheduling process and

just assigns 10 redundancy for each task. This column shows the

value of the performance measure for each inference method. The

remaining five columns show the five scheduling methods, in which

the percentage is the increase or decrease base on no scheduling

method “Uniform.” “Random” scheduling is assigning redundancy

randomly. We implement each for 10 times and get the mean as

the result. S-weight scheduling means using quality estimation

part with the weight of specificity. C-weight scheduling means

the weight of confidence and SC-weight means the weight of the

product of specificity and confidence. QF (short for quadratic form)

scheduling method considers the semantic relation between labels

using quadratic form base quality estimation. For all the crowd-

sourcing scheduling approaches, we use the same task selection

part whose range parameter is α = 0.5. From Table 1 we can see

that the “Random” scheduling is worse than no scheduling method

“Uniform.” “S-weight” scheduling and “C-weight” scheduling have

about half to improvement and half to a setback. “SC-weight” sched-

uling improves based on most of the inference algorithms. However,

all above do not consider the semantic relation of labels whereas

“QF” scheduling does. The performance of “QF” scheduling is better

than others and demonstrates the best result based on all infer-

ence methods except for MWW. In traditional accuracy measure

with no scheduling “Uniform,” MWK+ gets the best result 0.352

and “QF” improves it by 12.72%. Meanwhile, MWK+ also gets the

best result 0.405 in coherence and “QF” improves it by 5.67%. In hit

rate measurement, MWW gets the best result 0.547 and “QF” also

improves it by 1.67%. These experiments show that “QF” evaluation

has remarkable improvement and stable performance.

4.4 Effects of Task Selection
In quality estimation part, in fact, we want to infer which task has

more potential to improve inferring the ground truth by another

one label. If the prediction of “potential” with high probability

accuracy, we will get a good quality estimation part. Moreover,

predicting top 25% tasks to be labeled in the next iteration with

most potential is more difficult than predicting top 50% because

of the stricter requirement. However, the range parameter α plays

the role of requirement. A smaller α means fewer tasks should

go another iteration to get a label for each. Meanwhile, it also

brings more meticulous scheduling to estimate answer quality of

each task. If the prediction of “potential” is accuracy enough, it

will show that smaller α results in better performance, otherwise

results in unforeseeable noise to offset the tendency.

In Figure 6, we diversify the range α from 0.1 to 1 that task selec-

tion module would make a decision which α-percent tasks should
get another a label. When α going to equal to 1, it means all the tasks

go for next iteration until budget consumed and each task would

get the same redundancy at last. So when α = 1, Scheduling has the

same performance of “Uniform”. From Figure 6 we can see that the

performance of all approaches except for MWW, become decreased

more or less during α increasing, especially for MWK, MWK+ and

MWC. “QF” makes a good prediction as expected. However, when α

is less than 0.5, there is no sign to have any improvement. Moreover,

the bottom left sub-figure in Figure 6 shows that the number of

iterations has a negative correlation with range parameter α . The
iterations depend on the crowdsourcing platform, and it will take

a quite long time for an iteration. Thus, too small α is not a good

choice because of the increasing iterations. We need set a proper

range parameter to get a remarkable improvement of the result and

have few increased iterations.

4.5 Evaluation of Costs
In this section, we present the results related to the budget issue,

which is a very important problem in crowdsourcing. In section 4.3

and Section 4.4, we show the good performance of the “QF” sched-

uling to improve the crowdsourcing aggregation result with the

limited budget. In other words, it means to achieve the same quality

of the result, “QF” scheduling needs less budget than other meth-

ods. We set benchmark budget offering 10 redundancy for each task

that obtaining 10 × 984 labels from crowdsourcing using “Uniform”

method. In Figure 7, the dashed line uses the benchmark budget as

the baseline, and we set redundancy mean from 7 to 12 using “QF”

scheduling to draw the solid lines with range parameter α = 0.5.

The intersection of the dashed line and solid line in the same color

(pointed by arrows) means the redundancy mean using “QF” sched-

uling and making the same quality of the result. The benchmark is

with 10 redundancy, and the arrows pointing to the values of x-axis

less than 10 mean we can save budget, vice versa. In the figure, we

can see except for MWW, the rest inference approaches are saving

budget more or less. In MWC inference method, our scheduling

saves about 10% budget in any three performance measures. Note

that using commercial platforms such as CrowdFlower, the trans-

action fee in the platform is 20% of the budget. So in comparison,

our work can obtain a remarkable saving result in BTSK problem.

5 RELATEDWORK
In crowdsourcing, task redundancy is a commonly used method to

improve the result quality at the cost of increased payment. Thus

given a certain amount of budget, how to scheduling tasks can

largely affect the result quality. Several efforts [2, 11, 16, 17, 20]

have been made on crowdsourcing task scheduling under budget

constraints. Bansal et al. [2] present an active learning scheme for

document selection that aims at maximizing the overall relevance

label prediction accuracy for a given budget of available relevance

judgments by exploiting system-wide estimates of label variance

and mutual information. Karger et al. [11] propose a probabilis-

tic model for general crowdsourcing in consideration of both task

allocation and inference. And their main contribution is a theo-

retical analysis of the total budget for achieving certain collective

quality. Yu et al. [20] propose a novel quality and budget aware

spatial task allocation approach which jointly considers the work-

ers’ reputation and proximity to the task locations to maximize

the expected quality of the results while staying within a limited

budget. Tran-Thanh et al. [16] propose an algorithm called Bud-

getFix, it determines the number of interdependent micro-tasks

and the price to pay for each task given budget constraints. Tran-

Thanh et al. [17] present an algorithm called Budgeteer to solve the

problem of task allocation in crowdsourcing systems with multiple
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Figure 6: Performance of quadratic form scheduling over range α (rmean = 10)
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Figure 7: Budget saving of quadratic form scheduling comparing with uniform method (α = 0.5, Uniform:r = 10)

complex workflows under a budget constraint, which calculates

an efficient way to allocate budget to each workflow. However,

existing work either targets general crowdsourcing applications

or specifically focuses on particular crowdsourcing tasks, which

cannot be straightforwardly employed to address our labeling tasks

considering specific knowledge.

As labeling is one of the most feasible types of tasks that fit for

crowdsourcing, a large amount of existing work [1, 5, 14, 19, 22]

on crowdsourcing takes labeling as the target tasks. Most existing

methods treat each answer as either true or false. Actually, there

can be hierarchical semantic relations among workers’ answers,

in which case simply classify an answer as binary is not good for



acquiring specific knowledge. There have been a few studies [4, 15]

on acquiring binary relationships to construct a taxonomy of con-

cepts and using the taxonomy to classify items based on multi-label

classification [3]. Han et al. [9] further propose to explicitly use

specificity to measure the result quality in crowdsourcing task pro-

cessing. However, existing studies on labeling tasks do not support

task scheduling with limited budget, thus cannot find an optimal

tradeoff between quality and costs.

In this work, we are concerned with designing a task schedul-

ing framework in consideration of budget limit in the context of

knowledge acquisition tasks. Our work is the first attempt to con-

sider budgeted task scheduling in dealing with specific knowledge

acquisition problems with crowdsourcing.

6 CONCLUSION
Budgeted task scheduling problem is of paramount importance in

crowdsourcing. Most existing methods use error rate or accuracy to

measure the result quality, which are not suitable for crowdsourcing

tasks like knowledge acquisition as concerned in this work. We first

formalize the budgeted tasks scheduling for crowdsourced knowl-

edge acquisition (BTSK) problem. Then we propose novel criteria to

measure the answer quality in the context of BTSK problems. Next,

we present a knowledge based iterative scheduling framework to

address the BTSK problem. There are mainly three key issues to

address in our framework. Among them, inference is responsible
for inferring the final results on the basis of the received answers

from workers, and we design two algorithms including MWK+ and

ProFull in this regard. Second, quality estimation concerns estimat-

ing the potential quality of a task so as to determine whether it

is necessary to solicit more answers from extra workers, and we

present a quadratic form based quality estimation method through

considering the semantic specificity of an answer and the semantic

relation between labels. Third, in task selection, we use the range
parameter α to adjust the scheduling to get a better result with few

iterations. We have implemented our scheduling framework in real

crowdsourcing platform and analyzed the data. We find that almost

half of the workers in platform often give most specific labels but

with low confidence. We have evaluated our solution extensively

in comparison with the state-of-the-art methods and the results

demonstrate the advantages and effectiveness of our methods in

the context of knowledge acquisition task.
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