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Abstract

Word embeddings have attracted a lot of attention.
On social media, each user’s language use can be
significantly affected by the user’s friends. In this
paper, we propose a socialized word embedding al-
gorithm which can consider both user’s personal
characteristics of language use and the user’s social
relationship on social media. To incorporate per-
sonal characteristics, we propose to use a user vec-
tor to represent each user. Then for each user, the
word embeddings are trained based on each user’s
corpus by combining the global word vectors and
local user vector. To incorporate social relation-
ship, we add a regularization term to impose simi-
larity between two friends. In this way, we can train
the global word vectors and user vectors jointly. To
demonstrate the effectiveness, we used the latest
large-scale Yelp data to train our vectors, and de-
signed several experiments to show how user vec-
tors affect the results.

1 Introduction

Social media has become one of the major streams of publish-
ing natural language texts on the Web. Users are using social
media platforms such as Facebook, Twitter, and Yelp to re-
ceive friends’ update about their lives and learn knowledge
from friends. A well-known effect of social network is the
concept of “homophily,” which has been developed in psy-
chology [Lazarsfeld and Merton, 1954] and observed in so-
cial network [McPherson et al., 2001)]. It indicates that users
being friends tend to share similar opinions or topics. On the
other hand, social linguists also found that natural language
understanding in a society requires the understanding of the
social networks in which the language is embedded. A net-
work could be loose or tight depending on how members in-
teract with each other [Holmes, 2012|] and may affect speech
patterns adopted by a speaker [Dubois and Horvath, 1998]l.
People’s social language code can depend on their educations,
working classes, ages, ganders, and other social groups. For
example, some group of people say “I am gonna...” while oth-
ers say “I am going to...,” and some group of people say “It
looks like...” while others say “It looks as if... .” Thus, there

is a need of development of computational sociolinguistics
for social media texts [Nguyen et al., 2016

Text data representation plays a key role in computational
linguistics and natural language processing. Recently, dis-
tributed word representation based on neural network lan-
guage models (NNLMs) [Bengio ef al., 2003] has attracted
a lot of attention, since such dense word vector representa-
tion in high-dimensional (but much lower dimensional than
one-hot representation) space can provide reduced computa-
tional complexity and improve generalization ability of ma-
chine learning models for many downstream tasks [Collobert
et al., 2011]]. Word embeddings, such as word2vec [Mikolov
et al., 2013al, simplifies the NNLM architecture by reduc-
ing the latent variables and relaxing the constraint of con-
text words being previous words. Thus, it can adopt effi-
cient training algorithm to train over large-scale corpus and
is widely used in many applications, such as information ex-
traction [Turian ef al., 2010]], sentiment analysis [Tang et al.,
2015al, search engine [Mitra and Craswell, 2017], etc. When
applying text representation learning to social media texts, a
key problem is to handle the aforementioned difference for
different social groups of people.

In this paper, we present a socialized word embedding ap-
proach to generate social-dependent word embedding vectors
for words shown in social media. Our model adopts the sim-
plest but most efficient and effective word embeddings model
used in word2vec as a base model. Then we apply person-
alization to words by incorporating a user vector for each
social user. The word embeddings for each social user will
not only depend on the global word embeddings, but also the
user vector. To incorporate the friend relationship, we add
a social regularization term when we train both the global
word vectors and local user vectors. To demonstrate our so-
cialized word embeddings, we use the Yelp business review
data to train our vectors. We first verify that by incorporating
the user vectors into word embedding model, we can signif-
icantly reduce the perplexity on test data. Then we use the
review rating prediction task to verify that the global word
vector plus the local user vector can generate a better repre-
sentation for the sentiment classification problem. In addi-
tion, we test whether we can use the user vectors learned in
unsupervised way as attention vectors in deep neural network
based models. The code is available at https://github.com/
HKUST-KnowComp/SocializedWordEmbeddings|
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2 Related Work

In this section, we review our related work in three categories.

2.1 Personalized and Socialized Language Models

Language model is a fundamental natural language process-
ing problem and has been well studied for many years [Ju-
rafsky and Martin, 2008]. It is natural to extend language
models to be personalized or socialized since we know that
every person in the world has his/her own speech or writ-
ing patterns and can be affected by others. Here we dis-
tinguish personalized and socialized language models to be
whether they consider the social relationships of users on so-
cial media. Personalized language models were mainly ap-
plied to Web search [Croft et al., 2001; |Song ef al., 2010;
Sontag et al., 2012 or collaborative search (where user
groups are clustered based on user behaviors instead of ex-
plicit connections) [Sun et al., 2005} Teevan et al., 2009;
Xue et al., 2009|]. Socialized languages models have recently
been developed, which were also applied to search prob-
lems, but to social media text search [Vosecky ef al., 2014;
Huang ef al., 2014; Yan et al., 2016].The socialization of lan-
guage models can incorporate social friends’ information as
a smoothing factor to improve the language sparsity problem.

2.2 Distributed Word Representation

NNLM has attracted more attention recently to generate dis-
tributed word representations. It was first successfully trained
with large corpus by [Bengio et al.| (2003) to obtain rep-
resentations of words. Later, it was further scaled up and
studied [Morin and Bengio, 2005} Mnih and Hinton, 2008
Collobert et al., 2011]] and pushed to limit to train on Web-
scale corpus [J6zefowicz et al., 2016]. Word embedding, i.e.,
word2vec [Mikolov et al., 2013b; [Mikolov et al., 2013all,
simplifies the NNLM problem and has been shown to be ef-
ficient for training over very large-scale corpus. Inspired by
word2vec, many alternatives of embedding approaches have
been proposed [Pennington ef al., 2014; Levy and Goldberg,
2014]] and a comprehensive study has shown that word2vec
can be very powerful when all the models are tuned on the
same corpus with best hyper-parameters [Levy et al., 2015]].
Recently, a personalized NNLM has been proposed [Wen
et al., 2013|] which trains an NNLM over a global data set
and adapts that language model to small data for each per-
son. User embeddings were also introduced into word em-
beddings [Yu et al., 2016} [Song and Lee, 2017 while the
impact of socialization still remains unclear.

2.3 Multi-task Learning on Social networks

Our work is also related to multi-task learning [Caruana,
1997|. Multi-task learning is a learning setting where dif-
ferent learning tasks are performed simultaneously. Multi-
task learning can be naturally applied to social media ap-
plications, since the task related to each person can be per-
sonalized. For example, social media topic classification and
sentiment classification can be personalized [Hu ef al., 2013;
Song et al., 2013;[Wu and Huang, 2016].Recently, deep learn-
ing based models also adopt a separate learning mechanism
to model different users along global text representation to

improve sentiment classification results [Tang et al., 2015¢;
Tang et al., 2015b]l, which can be regarded as a multi-task
learning. Moreover, attention models can be enabled with
multi-tasks (each task is a user attention) [Chen et al., 2016]l.
Compared to all the above multi-task learning approaches
which need supervision for all the tasks, we are unsupervised
learning. Thus, our socialized word embeddings can be used
for many down-stream tasks.

3 Socialized Word Embedding

In this section, we introduce our socialized word embedding
model and show the optimization algorithm.

3.1 Personalization

To train the word embeddings, we consider the continuous
bag-of-words (CBOW) model [Mikolov et al., 2013al] as our
base model. We denote the training corpus as W. Dif-
ferent from original word embedding training, we need to
distinguish the training sets for different users. Suppose
we have N users uj,...,uy. Since our word embedding
training only considers a word w;’s context, i.e., C(w;) =
{wj_s,...,wjts} where s is the half window size, we can
aggregate all documents as a corpus W; for user u;. We also
represent u;’s neighborhood set as N; = {u;1,...,u; N, },
where N; is the number of neighborhoods.

In our CBOW based model, given a sequence of training
words, the first objective is to maximize the log-likelihood:

N
=3 3" log P(w;|C(w),wi)), (1)

7 wj eWw;

which is performed over all users u1, . . ., uy. Different from
CBOW model, here we specify that the context words are
user-dependent. This means for each user u;, s/he will think
about a predicted word given the global words meanings and
customize them to his/her own preference. More specifically,
SUppOse We use W; € R?, where d is the dimensionality of
vector w;, as the global vector representation of w. We also
use a user vector u; € R? to represent the user. Then we
combine the global word vector and user vector as a new
vector of word w;: W;-z) = w; + u;. If we have a se-
quence of words w;_g,...,W;, then the combined word

vectors for user u; are represented as w( ) o

illustration of such composition is shown 1n Flgure i The
CBOW model is difficult to optimize when the vocabulary
size is large, since the computation of log P(w;|C(w;), u;)
needs the normalization over all the words in the vocabulary.
Thus, originally there are two techniques used for optimizing
the problem, hierarchical softmax [Morin and Bengio, 2005
Mnih and Hinton, 2008 and negative sampling [Mikolov et
al., 2013al]. Here we use hierarchical softmax as an exam-
ple. Suppose we have a tree over words, e.g., the Huff-
man tree [Huffman, 1952] built based on word frequencies.
Then let [’ be Huffman code of k-th node in the path
from root to leaf node identical to w;, where l;”j € {0,1},
ke {2,...,L"}, and L™ is the length of the path. Then
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Figure 1: Illustration of Socialized Word Embeddings.

the objective function can be rewritten as:
i
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where Xg;J) ZwEC(w7) W(Z) ZwEC(wj) (W + ui)'
Thus, hierarchical softmax converts the softmax probability
log P(w;|C(w;), u;) of predicting the word w; based on its
contexts C(w; ) and user vector u; to be a series of binary clas-
sification problems to predict words through the path from
root to the node of the word. For each binary classification at
node k in the path, we have:

l(wj, ui, ly) =—log P(l w’|X k )

) -1og[o<x£z‘3 6) )]
— 1 logll - o(XQ 01 )] B)

where o(z) = 1/(1 + exp(—2)) is the loglstlc function. We
can see that if the Huffman code l J 1 we classify the
current node k in the path as true and if l;”j = 0 we classify it
to be false. Then we have a series of classification problems
following the path. So here in the model, we have a series of
“hidden” parameter vectors 0?11 to perform classification.
In the Huffman tree, deeper leaf nodes means low-frequency
words, and thus will follow longer paths.

To minimize the objective function J;, stochastic gradient
descent (SGD) is applied. The parameter vectors 91 1» word
vectors in the context, and user vectors can be updated as
follows:

0y, =017 —m[l— 17 — (XD 0 X,
Wi=W — 7712786 wj’u“lk), and
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where ¢ = 2s is the window size and 7, is a degenerative
learning rate.

3.2 Social Regularization

Till now we have introduced how we personalize each user’s
word vector by adding a local user vector to the global word

Dataset | YelpR8 | YelpR9
#Users 686,556 | 1,029,432
#Reviews 2,685,067 | 4,153,151
Avg. Review Length 114.17 144.30
Avg. Friends 7.68 29.87

Table 1: Statistics of YelpR8 and YelpR9 datasets. The Yelp Dataset
Challenge Round 8 begins on September 1, 2016 and continues
through December 31, 2016. The Yelp Dataset Challenge Round
9 begins on January 24, 2017 and continues through June 30, 2017.

vectors. In practice, the social relations are also useful to
improve the learning results of user vectors, since some of the
users may only publish a few documents. Thus, we propose
a social regularization term to all the user vectors:

N
Fo=> Y |l —ujlfs, 5)
iouj eEN;
where we minimize the Lo-norm of the difference between
two users with a social relation. The illustration of social

regularization is shown in Figure|[l]
We can also apply SGD to s, where we have:

2 Z (u; —uy),

u; EN; (6)
—2(u; — ).
Here when we are working with a document published by u;,
the user vector u; should be updated based on all its friends
u;’s vectors while user vector u; is updated only based on u,.
‘We can combine the second objective function with the first
one and perform SGD alternatively for global word vectors,
parameter vectors, and local user vectors. However, as shown
in Egs. @) and (6), the user vectors will be updated much
more times than word vectors. Originally in CBOW opti-
mization, all the global word vectors are not constrained since
the scale of word vectors can be bounded by the learning rate
(combined with frequencies of words). Here we propose a
constraint for user vectors to make the numerical optimiza-
tion stable. The overall cost function is then:

J=T1+ A
sit. YVoug, |wlle <y @)
where r is the constraint for u;’s Lo-norm. 7 is data de-
pendent and should be tuned with development set. In prac-
tice, we solve this by SGD with re-projection [Goodfellow e

al., 2016]. The detailed algorithm is shown in Algorithm
which is called socialized word embedding algorithm.

llj = llj

4 Experiments

In this section, we show the experiments to demonstrate the
effectiveness of socialized word embeddings.

4.1 Datasets

We use the Yelp Challengeﬂ datasets as our evaluation sets.
At Yelp, users can write reviews for some businesses, e.g.,

Uhttps://www.yelp.com/dataset_challenge
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Algorithm 1 Socialized Word Embedding Algorithm.

Input: Social media data with N users: uq, . .., uy, where
each user has a corpus W; = {d; 1,...,d; a, } where M;
is the number of documents written by w;.
Initialize: Maximum iteration 7', learning rates 71, 72,
social regularization weight A, size of context window c,
and constraint parameter 7.
if Iteration ¢ < 7" then

for all u; do

for all d; in W, do

. ) ) T ) )
0 =0 —m1 =1 —o(XP) 61 )X

Wi 0l(wj,ug,lk)

W I=W—1 k=2 BXEJ)
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end for
u; = u; — ng)\zujeNi(ui - llj)
if ||u;|| > r then
Wi gt
end if
u; :=u; — pA(u; —u;)
if ||u;|| > r then
U = W
end if
end for
end if
Output: Word embeddings w; and user embeddings u,.

restaurant, hotel, etc. Users can also follow each other to
receive information from friends (some of the friend infor-
mation is from Facebook or other social networks given its
infrastructure). The statistics of our data are shown in Ta-
ble[ll From the Table we can see that the size of data released
by Yelp increases a lot over years. This is one of the largest
social network data that are available with a lot of texts. We
randomly split the data to be 8:1:1 for training, developing,
and testing. All the following results are based on this fixed
segmentation.

4.2 Experimental Settings

We trained all the word embedding models based on the train-
ing data we split out. For downstream applications, we will
change the setting according to different intentions we want
to test our model. The word embedding model was written
with C language based on the original release of W0rd2vecﬂ
All the experiments were conducted on a SuperMicro server
with E5-2640v4 CPUs. To make fair comparison, we set the
hyper-parameters for original word2vec to be the same for all
the models. For example, the window size was set to be five
and the dimension of embeddings was set to be 100. We used
CBOW model for all the word embeddings. Empirically, we
found Skipgram model had comparable results as CBOW for
Yelp datasets.

ZFor a back up of the code, please see: https://github.com/
dav/word2vec.

4.3 Perplexity

In the first experiment, we test the fitness of test data of dif-
ferent word embeddings. We use perplexity as a measure for
the experiments. However, since essentially our model and
word2vec are not language models, which do not directly
optimize the perplexity, this experiment is only conducted
to show insight of different hyper-parameter settings of our
model. By definition, perplexity is used to evaluation how
good a model is to predict the current word based on several
previous words. Since we are using a sliding window of size
s = b to train all the word embeddings, we present the 6-
gram perplexity. We train the word embeddings based on the
whole training data. To improve efficiency of testing different
hyper-parameters, for both development set and test set, we
randomly sampled one sentence for each user to evaluate the
sentence based perplexity.

The results of perplexities are shown in Figure[2] Note that
our perplexity values are high if compared with the values
normally shown in the literature. There are mainly two rea-
sons. First, our model does not directly optimize perplexity
as language models do. Thus, the model may not fit the data
very well. Second, the Yelp data we used are noisier than
formal language. Thus, the perplexity should be reasonably
high. This is also verified in [Yan et al., 2016]. Empirically,
although word2vec does not optimize perplexity directly, it
has a good trade-off between the training cost and test effec-
tiveness as word representation for other downstream tasks.

We first show the perplexity results with fixed 7 (Lo-norm
constraints for user vectors) and varied A\ (social regular-
ization parameter) in Figures [2(a)] and 2(b)] on YelpR8 and
YelpRO respectively. They show that for both datasets, when
A = 0, which is the personalization case, the perplexity can
be improved with user vector for each user. Moreover, when
increasing the social regularization term, the perplexity can
be further improved first, but will show no more benefit when
A is too large. This reason may be that, when fixing the user
vector size, increasing the social regularization will tend to
first refine each use vector by its friend, but eventually impose
all the user vector to become as similar as possible, which will
again under fit the data.

Then we show the results of varying r with fixed A in Fig-
ure[2(c)] It shows that when increasing the regularization con-
straint r, the perplexity is first reduced. Then when continu-
ing increasing r, again it will make the perplexity worse. If
the user vector’s norm becomes too large, it will dominate
the word vectors when optimizing the cost function. Thus, in
our algorithm, the parameters r and A are coupled. There is
no single trend to make the perplexity continues to decrease.
We performed grid search in the range of {27°,...,2°} over
both r and A based on validation set, select the best hyper-
parameters, and show the final results on test set in Table E}
From the table we can see that, the improvements of both per-
sonalization and socialization are significant.

4.4 Sentiment Classification

In this section, we test our socialized word embeddings with
a downstream task, rate prediction for Yelp reviews. On Yelp
website, a user is allowed to write reviews to businesses. At
the same time, the user can provide a rating score to the
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Figure 2: Perplexity results (lower means better) on development set.

Dataset | YelpR8 | YelpR9
word2vec 45914.3 | 57,742.6
personalization | 33,887.2 | 43,476.8
socialization 24,301.6 | 31,074.6

Table 2: Test set perplexity.

YelpR8 YelpR9
Head  Tail | Head Tail
#Users 2,125 8,214 | 3,480 13,288
#Avg. Reviews | 28.5 7.4 28.2 74
#Avg. Friends | 1353 479 | 268.0 130.4

Table 3: Statistics of subsets of one-fifth of training data.

business. We follow the task used in [Tang et al., 2015c;
Tang et al., 2015a; Tang ef al., 2015b; (Chen et al., 2016],
which is long document sentiment classification. When user
information is desired to be included, previous studies sim-
ply preprocess the data and work only on the data contain-
ing sufficient user information (e.g., containing only 4,818
users) [Tang et al., 2015b}; (Chen ef al., 2016]l. In this work,
we are curious about how good it will be if the whole dataset
or partial dataset can be used. We follow the semi-supervised
learning setting claimed by [Turian et al.| (2010), where the
word embeddings are trained in an unsupervised way with
larger corpus, then it can be used for downstream tasks with
smaller number of training examples. To test on this task,
we adopt the simple linear support vector machines (SVM)
as learning machine where the features are average of word
embeddings, and select different proportions of data to train
the SVM classifiers. To test how significant data selection
or preprocessing can affect the final results, we also split the
users to be head users and tail users. Here for head users we
mean users published a lot of reviews, while tail users pub-
lish less. We simply sort all the users and select all the users
publish half of the total reviews as head users, and the other
users are left as tail users. We randomly select one-fifth of
the training data for SVM training for the efficiency of our
experiments. The statistics of overall, head, and tail users are
shown in Table[3l From the table we can see that head users
tend to publish more reviews and have more friends. YelpR9
dataset has larger numbers than YelpR8, especially the aver-

YelpR8 YelpR9
dev test dev test
word2vec 57.02 58.43 | 58.81 59.83
personalization | 57.25 58.66 | 59.15 60.11
socialization 57.43 58.84 | 59.42 60.30

Table 4: SVM classification accuracy (in %) on test data (trained
with one-fifth training data).

age numbers of friends.

We show the results trained based on head and tail subsets
in Figure [3| From the figure we can see that, the improve-
ment of both personalization and socialization on head data
is more significant than tail data. This means, when there are
less reviews for a user, and at the same time the relations link
to that use are less, our current algorithm cannot train it very
well. On the other hand, the absolute values of accuracy for
head are less than tail. It means that, if we randomly sample
tail data for annotation, it can get better results. However, in
practice, we are more likely to sample head users, e.g., opin-
ion leaders or hubs, in a network to annotation corresponding
data. Thus, it may be better to carefully treat different groups
of user when we have a real problem which needs us to anno-
tate data for social media. In addition, by comparing YelpRS8
and YelpR9, we found that the improvement over YelpR9 is
greater than YelpR8 on both head and tail users.

We also show the classification results in Table 4] with
100% of one-fifth training data, with hyper-parameter tuning
(including the parameter for SVM) over development set, and
tested over test set. It shows again that the personalized vec-
tors have better performance than word2vec, and socialized
vectors are better than personalization. The improvement is
in the middle of head and tail sets.

4.5 User Vectors for Attention

Finally, we test our user vectors with a deep learning setting.
Deep learning has been heavily used in the community since
its state-of-the-art performance. For document level senti-
ment classification on Yelp data, the most recent work [[Chen
et al., 2016] shows that by using a user attention vector, the
results can be improved significantly. In this experiment, we
show an interesting setting to use our user vectors as “fixed”
attention vectors. Then we show how good they are com-
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All of the results are based on ten trials of random sampling from

Method CNN LSTM HCNN HLSTM
Dev Test Dev Test Dev Test Dev Test
Without attention 61.14% 62.37% | 62.78% 64.23% | 63.28% 64.70% | 64.06% 65.69%
Trained attention 62.61% 63.99% | 63.86% 65.30% | 64.16% 65.59% | 65.11% 66.50%
Fixed user vector as attention | 62.15% 63.55% | 63.22% 64.76% | 63.98% 65.48% | 64.48% 66.02%

Table 5: Comparison of our model and other baseline methods (in accuracy) on user attention based deep learning for sentiment analysis. All
the models are trained with the randomly chosen one-fifth of the training sets same as TableE}

pared to the baseline without attention, and the approach with
user attention trained with supervised learning. The atten-
tion mechanism and architecture simply follow [[Chen et al.,
2016]. This experiment shows how good our unsupervised
learning of user vectors are compared with supervised learn-
ing. All the training settings and parameters follow the best
one shown in [[Chen et al., 2016| and their released software.

We use the one-fifth training set in the previous experiment
of YelpRS data as our training data, and test on both devel-
opment and test sets, which have same scales with the sets
used in [Tang et al., 2015b; |Chen ef al., 2016|] . We com-
pared with different deep learning architectures, i.e., convo-
lutional neural networks (CNN) and long short term mem-
ory (LSTM) recurrent neural networks (see [Goodfellow et
al., 2016] for more details), and their hierarchical versions
(HCNN and HLSTM) [Tang et al., 2015b;|Chen et al., 2016].
For hierarchical versions, the attention can be attended to both
word and sentence levels. The results are shown in Table
We can see that our user vectors are very effective compared
with the trained user vectors. We can improve CNN with
about 1.2 points on test set while trained attention improves
1.6 points. For other deep learning architectures, we can con-
sistently improve the corresponding deep learning algorithms
without attention, while are very competitive to the super-
vised learning results.

5 Conclusion

In this paper, we present a socialized word embedding algo-
rithm to learn a set of global word vectors and a set of local
user vectors from social media. A simple but effective social
regularization is imposed to our model and we have shown

that both the user vectors themselves for personalization and
the social regularization can improve the downstream tasks.
We use three sets of experiments to demonstrate the effective-
ness of our user embeddings. One important future work is
how to improve the performance over tail users who publish
less text on the social media and have less friends.
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