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Abstract
Traditional text classification algorithms are based
on the assumption that data are independent and
identically distributed. However, in most non-
stationary scenarios, data may change smoothly
due to long-term evolution and short-term fluctu-
ation, which raises new challenges to traditional
methods. In this paper, we present the first attempt
to explore evolutionary neural network models for
time-evolving text classification. We first introduce
a simple way to extend arbitrary neural networks to
evolutionary learning by using a temporal smooth-
ness framework, and then propose a diachronic
propagation framework to incorporate the histori-
cal impact into currently learned features through
diachronic connections. Experiments on real-world
news data demonstrate that our approaches greatly
and consistently outperform traditional neural net-
work models in both accuracy and stability.

1 Introduction
Text classification is a fundamental problem in data mining.
Traditional classification algorithms are based on the assump-
tion that data are independent and identically distributed.
However, in many real applications like news topic classifica-
tion [Allan et al., 1998; Kim and Hovy, 2006], event detection
and tracing [Yang et al., 1998; Atefeh and Khreich, 2015],
the data to be learned are not static. For example, topics in
online social media and news media are usually observed se-
quentially from a series of time periods, and their distribution
changes smoothly over time. Very often, such change mainly
consists of two parts: long-term evolution due to concept drift
and short-term fluctuation due to noise disturbance. For ex-
ample, the concept of topic “media” commonly meant tradi-
tional print media like newspaper before 1960s, and after that
it slowly drifted with the emergence of Internet, and today it
more refers to the emerging new media including microblogs,
podcasts, etc. Meanwhile, it is natural to expect that the over-
all interests of social media may fluctuate temporarily due to
some emergency events during the long-term evolution.

These non-stationary scenarios create what we call time-
evolving data or evolutionary data, which raises new chal-
lenges to traditional text classification. First, it is undesir-

able to simply use a single static classifier for all time peri-
ods. Otherwise, as the data distribution changes over time,
the classifier may only learn some over-generalized features,
thus fail to either reflect the nuances between different peri-
ods or fit the data of a specific time period. Second, diver-
gences even contradictions lie between data of different time
periods due to long-term evolution and short-term fluctuation.
Thus, incorporating all the historical and current data to train
a current classifier makes little sense in non-stationary scenar-
ios. Even in stationary or non-evolutionary scenarios, training
with simple combination of all historical data is also worth-
less and inapplicable due to the computation cost. Third, it is
also unfavorable to obtain a series of completely independent
classifiers for each time period, since in this way we may lose
extensive valuable information from adjacent time periods.
What’s worse, when only a slice of all time periods is consid-
ered, the classifier may overly fit the slice data of the corre-
sponding time period and not be able to distinguish between
long-term data changes and short-term data fluctuations.

In this paper, we propose two neural network frameworks
to learn a chain of evolving classifiers for time-evolving data.
In the first framework, we introduce the temporal smooth-
ness into learning process to train evolutionary neural net-
work classifiers. In the second framework, we design a di-
achronic propagation mechanism to incorporate the historical
impact into currently learned features. In both frameworks,
the classifier can fit the corresponding slice data in each time
period as much as possible, thus maintaining high sensitivity
to the long-term data changes. In addition, the classifier can
also take recent periods into account and not deviate too much
to fit the historical data, thus maintaining high robustness to
the short-term data fluctuations. Experiments on real-world
news data demonstrate that our methods clearly and consis-
tently outperform traditional neural network models in both
accuracy and stability. The main contributions of this paper
can be summarized as follows:

1. We introduce the basic formulation of evolutionary clas-
sification with neural networks. To our best knowledge,
it is the first time that the evolutionary case of neural net-
work learning is explored to classify time-evolving data.

2. We introduce a basic evolutionary approach based on
temporal smoothness framework and propose a di-
achronic propagation framework to extend arbitrary neu-
ral networks to evolutionary learning.



3. We conduct extensive experiments and case studies
on two real-world news datasets and three synthetic
datasets. The empirical results demonstrate that our ap-
proaches clearly and consistently improve the current
start-of-the-art neural network models.

The code is available at https://github.com/
RingBDStack/Time-evolving-Classification.

2 Related Work
As traditional static machine learning algorithms are inca-
pable for the goal to reflect long-term data evolution and
maintain robustness against short-term data fluctuations, a
new topic of evolutionary learning is introduced to deal with
time-evolving data [Chakrabarti et al., 2006] and has at-
tracted significant attention in recent years. For the unsuper-
vised case of evolutionary learning problem, multiple clas-
sical clustering algorithms have been extended to evolution-
ary versions, such as k-means clustering [Chakrabarti et al.,
2006], spectral clustering [Chi et al., 2007; Ning et al., 2007;
Tang et al., 2008], Gaussian mixture model [Zhang et al.,
2009], etc. Moreover, Wang et al. [2012] proposed a general
model for clustering large-scale evolutionary data based on
low-rank kernel matrix factorization. Xu et al. [2014] pro-
posed an adaptive evolutionary clustering method by track-
ing the time-varying proximities between objects followed
by static clustering. Furthermore, Jia et al. [2009] first con-
sidered the semi-supervised evolutionary learning problem,
and proposed a general framework based on the Reproduc-
ing Kernel Hilbert Space. However, up to now, the work on
the supervised case of evolutionary learning is still limited,
especially on the time-evolving text classification.1

Relevantly, deep learning models have proven to be state-
of-the-art methods in various applications including text clas-
sification [Liu et al., 2017]. Particularly, recurrent neural net-
works (RNN, LSTM, GRU, etc.), which use feedback loops
to exhibit dynamic temporal behavior, have shown promising
results on sequential data classification issues such as speech
recognition [Graves et al., 2013; Graves and Jaitly, 2014] and
document classification [Tang et al., 2015; Yang et al., 2016].
However, they are still traditional methods dealing with static
data with identical distribution, with the difference that each
sample is a sequence of data (e.g., each document consists
of a sequence of words). To our best knowledge, deep learn-
ing models have not been explored for evolutionary learning
scenario to reflect the long-term changes of dynamically dis-
tributed data, which is our focus in this article.

Online learning is also related to our work, which is used
to update the decision model continuously as new data ar-
rives [Gama et al., 2014] and has been extensively studied
recently [Crammer et al., 2006; Masnadi-Shirazi and Vascon-
celos, 2010; Duchi et al., 2011]. Although online learning tar-
gets the similar problem setting as evolutionary learning, they
are essentially different. On the one hand, online learning is

1Here we distinguish the concept of evolutionary classification
on time-evolving data from evolutionary algorithms (EAs) moti-
vated by biological evolution. Up to now, EAs are still traditional op-
timization algorithms to perform evolutionary computation on static
data, which is unrelated to the problem discussed in this paper.

mostly used in areas where it is computationally infeasible to
train over the entire dataset and is under the same assump-
tion that data are independent and identically distributed as
traditional static machine learning. On the other hand, al-
though there are also some studies on online learning in non-
stationary scenarios such as concept drift [Gama et al., 2014;
Ghazikhani et al., 2014], they mainly focus on the snapshot
changes between old data and new data to improve adaptabil-
ity to new data and to reduce learning costs, while do not con-
cern about the long-term data trends and interactions, which
is one of the core requirements of evolutionary learning.

3 Time-evolving Text Classification
In this section, we first introduce the basic formulation of
supervised evolutionary classification problem and then pro-
pose two evolutionary neural network (NN) frameworks.

3.1 Problem Formulation
Unlike traditional static classification, in which the data are
assumed independent and identically distributed, the goal for
evolutionary classification is to train a chain of evolving clas-
sifiers on time-evolving data to reflect the long-term evolution
and to maintain robustness against the short-term fluctuation.

In evolutionary classification applications, time is regularly
sliced into a sequence of steps according to certain periods,
which presents a sequence of sliced data, and the distribu-
tion of these data usually changes over time. Assuming there
are T consecutive time steps, we are given a set of sequen-
tial data sets X = {X1 ,X2 , ...,XT}, and each subset Xt

contains nt data points generated in time step t with an un-
known data distribution P(x; t): Xt = {xt1, xt2, ..., xtnt

}(t =
1, 2, ..., T ), along with a corresponding set of class labels
Yt = {yt1, yt2, ..., ytnt

} where yti represents the class label of
data point xti. As the posterior distribution P(y|x; t) usu-
ally changes smoothly over time, the classification functions
of different time steps are time-evolving. That is, the clas-
sifier ft is not only reflected from the mapping relationship
between Xt and Yt which sampled in time step t, but also
evolved from previous classifiers {fi}t−1i=1 . More generally,
the task of time-evolving data classification is to find T con-
secutive time-evolving classifiers {f, f, ..., fT } to reflect
the mapping relationships {ft : Xt → Yt}Tt=1 for all time
steps. As for neural networks, it is to train the correspond-
ing T sets of evolving model parameters {θ, θ, ..., θT } on
time-evolving data sets X.

3.2 NN with Temporal Smoothness Framework
Temporal smoothness framework was first proposed by
Chakrabarti et al. [2006] in evolutionary clustering problem,
which is also applicable for the general learning problem on
time-evolving data. Based on the smoothness assumption of
time-evolving data, this framework aims to smooth the learn-
ing results over time as much as possible while remaining
faithful to the current data. Following this framework, clas-
sifiers in evolutionary classification task should not change
dramatically from one time step to the next. In other words,
the classifiers ft1 and ft2 are expected to be more similar
when time step t1 and t2 are closer. As for neural network

https://github.com/RingBDStack/Time-evolving-Classification
https://github.com/RingBDStack/Time-evolving-Classification


models, since these models at different time steps only differ
in model parameters and share the same model structure, we
could ensure the similarity by preventing large deviation of
model parameters during the training process.

Therefore, for evolutionary classification problem, we pro-
pose to seek the optimal classifier ft at each time step t(2 ≤
t ≤ T ) by minimizing the following objective function:

J (ft) = Ct +Ht , (1)

where the first term Ct is the current cost function defined on
current data, and the second term Ht is the historical distance
penalty derived from the distance between current and histor-
ical classifiers. Specifically, we use negative log-likelihood
losses to measure the cost on each data point (x, y):

L(x, y, θ) = −
∑
l∈L

`(l, y) log f(l |x, θ), (2)

where L is the class labels set of the whole data, `(l, y) refers
to the true probability that the class label of data point x is
l, and f(l |x, θ) is the predicted likelihood produced by the
neural network classifier f with parameters θ. Then the whole
cost function in time step t is like following:

Ct =
1

nt

nt∑
i=1

L(xti, yti , θt). (3)

Using θi to denote the model parameters of classifier fi at
time step i, Ht could be expressed as follows:

Ht =

t−1∑
i=1

αi
t‖θt − θi‖, (4)

where the historical parameters θi(1 ≤ i ≤ t− 1) are known
and fixed, which have been well-trained in an earlier time; αi

t
is the weight to reflect user’s emphasis on current cost and
historical distance penalty. Generally, αi

t is exponentially de-
caying over time as follows:

αi
t = a · e−(t−i−1), (5)

where a is the initial decay factor to control the scale of his-
torical distance penalty.

Following this way, we finally obtain a basic evolutionary
approach to extend an arbitrary neural network model to seek
a chain of evolving classifiers on time-evolving data, and we
call it NN with temporal smoothness (NN-TS).

3.3 NN with Diachronic Propagation Framework
In general, a neural network classifier contains two compo-
nents [Ganin et al., 2016], feature extractor to extract the
high-level representation of the samples and label predictor
to predict the probability of each sample belonging to a label.
Specially, for evolutionary classification problem, as classi-
fiers are usually trained successively for each time step, there
are a chain of evolving extractors and predictors, and these
components only differ in model parameters and share the
same network structure at different time steps. In this case,
for a data point x, there is a chain of features extracted from
those time-evolving extractors, and these features are usually

not independent of each other. Thus, we propose a diachronic
propagation framework to incorporate these sequential fea-
tures produced by evolving extractors.

A neural network with diachronic propagation framework
usually contains more than one row (as shown in Figure 1),
corresponding to successive time steps on time-evolving data.
It starts with a traditional row without any specialties: a fea-
ture extractor E1 to extract sample’s feature representation
and a label predictor P1 to predict the probability based on
the feature extracted. When we shift to a second time step,
E1 and P1 have been trained well and their model parameters
are frozen and immutable, and a new row of feature extrac-
tor E2 and label predictor P2 will be trained. But different
from the first row, a diachronic connection layer is added and
trained, it combines the features extracted by E1 and E2 and
generates a new feature with the same dimension. We use
hi to denote the feature extracted by extractor Ei and its di-
mension is k, then the diachronic propagation process via the
diachronic connections could be expressed as follows:

h∗2 = g(W2[h2, h1]), (6)

where W2 ∈ Rk×2k is the weight matrix of diachronic con-
nections in second row, [h2, h1] is the concatenation of h2
and h1 and is as the input of the diachronic connections, h∗2 is
the output of the diachronic connections, g is an element-wise
activation function such as RELU [Nair and Hinton, 2010].

Similarly, when switching to a deeper time step, a deeper
row shall be appended and only that row is trainable. Then
a deeper diachronic propagation occurs by recursively com-
bining the extracted features via deep diachronic connection
layers. A deep diachronic neural network with t (t ≥ 3) rows
is shown in Figure 1, and the deep diachronic propagation
could be recursively expressed as follows:

h∗i = g(Wi[hi, h
∗
i−1]), i = 3, ..., t, (7)

where Wi ∈ Rk×2k is the weight matrix of diachronic con-
nections in layer i. The last h∗t is the composited feature
produced by the deep diachronic connection layers, which
is propagated to the last predictor Pt. Finally, Pt produces
a probability distribution to perform classification similar to
traditional neural networks.

In this diachronic propagation framework, we can find that
features will propagate diachronically along successive time
steps while forward propagating along the current time step.
By combining currently and previously learned features in
this manner, this framework achieves a richer composition-
ality, which is beneficial to learn the dynamic characteristic
in non-stationary scenarios and to reflect long-term changes
on time-evolving data. Moreover, the diachronic connections
could naturally transfer prior knowledge across different time
steps, making it more capable of keeping robust to temporary
noise by incorporating historical information.

Following this framework, the output probability distribu-
tion predicted by neural networks not only represents the cur-
rent data feature by forward propagation, but reflects the im-
pact of historical information. By incorporating the current
features and historical impact, the final evolving classifier
function could be expressed as follows:

ft(y|x, θ) = Pt

(
g(Wt[ht, h

∗
t−1])

)
, (8)
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Figure 1: The proposed framework with deep diachronic connections. In this architecture, for input data x, there is a series of features
extracted by time-evolving extractors at previous time steps, noted by the subscript 1, 2, ..., t. Then, all features are fed to the deep diachronic
connections. By combining diachronic propagated features and forward propagated features, the diachronic connections generate an output
with the same dimension at the last time step, which is used as the final composited feature to perform classification. Note that only the
current extractor Et, predictor Pt and the diachronic connections are trainable, the historical extractors Ei(1 ≤ i ≤ t− 1) which have been
trained well in an earlier time are frozen and immutable.

where ht is the current feature propagated via extractor Et;
h∗t−1 is the diachronic feature propagated via diachronic con-
nections. Following this function, the diachronic propaga-
tion framework trains the model parameters by minimizing
the cost function completely identical with traditional neural
networks (similar as Eq.(3)). Finally, we denote this evolving
framework as NN with diachronic propagation (NN-DP).

4 Experiments
In this section, we report experimental results to show effec-
tiveness and efficiency of our approaches.

4.1 Datasets
We conduct text classification experiments on two real-world
news datasets and three derived datasets.
• NYTimes: NYTimes is a large-scale corpus contains

nearly every article published in the New York Times between
January 01, 1987 and June 19th, 2007 [Sandhaus, 2008]. We
select subtags of NEWS according to the taxonomy of News
Desk, and finally we have 26 reasonable categories in total.
• RCV1: RCV1 is a manually labeled newswire collec-

tion of Reuters News from 1996 to 1997 [Lewis et al., 2004].
The news documents are categorized with respect to three
controlled vocabularies: industries, topics, and regions. We
traverse the topic hierarchy tree from the root to find dis-
joint subtrees (i.e., topics) with at least two branches (i.e.,
subtopics). Finally, we obtain a sub-corpus with 12 subtrees
(as shown in Table 1) and each subtree has at least two leaves
whose concepts are inclusive in their parent node.

Furthermore, we construct three synthetic datasets derived
from RCV1 to better evaluate the effectiveness and stability
of our proposed methods on different evolutionary scenarios.
• RCV1-org: Based on the 12 subtrees in RCV1, we

choose half of the leaf nodes to represent the top category for
each subtree, as a result RCV1-org dataset is produced with
12 categories and each of which contains half of the concepts
in the corresponding subtree.

• RCV1-noise: We perturb the RCV1-org dataset by
adding pseudo-random noise in each time step to evaluate the
robustness and stability of proposed methods. For different
levels of comparison, we divide the time steps into 4 groups
with noise ratios σ of 0, 0.15, 0.3, 0.45, respectively.
• RCV1-drift: In RCV1-org dataset, we have half of con-

cepts of each category in each time step, noted as old con-
cepts. In this dataset, we use the different half of concepts
noted as new concepts to simulate a drift process of topic con-
cepts. For each category, we resample the concepts using a
S-type probability st = 1

1+e−(t−6) to make the new concepts
growing with the speed of st over time, and the old concepts
oppositely decaying with the speed of 1− st. By speeding up
a man-made evolution process in this way, we obtain a new
time-evolving dataset with a stronger drift.

Finally, we treat each year as a time step for NYTimes
dataset and get 10 time steps from 1997-2006, treat each
month as a time step for RCV1 datasets and have 12 time
steps from 1996.09-1997.08. For each time step, we use half
of the data for training and the other half for testing. The
dataset statistics are summarized in Table 2.

4.2 Baseline Methods and Experimental Settings
We apply the following three state-of-the-art neural models to
evaluate the efficacy and adaptability of proposed methods.
• TextCNN: TextCNN [Kim, 2014] is a popular CNN-

based model and has achieved the current state-of-the-art in
text classification [Liu et al., 2017].
• RCNN: RCNN [Lai et al., 2015] is a CNN and RNN

based model with a recurrent convolutional structure.
• HAN: HAN [Yang et al., 2016] is a RNN-based model

with two-level GRU-based sequence encoder and hierarchical
attention mechanism.

For each baseline, we implement its evolutionary versions
by applying temporal smoothness framework (NN-TS) and
diachronic propagation framework (NN-DP), and evaluate
their classification performances in each time step.

For the input data representation, we use public release



Table 1: Statistics of the 12 subtrees branched from the topic hierarchy in RCV1.

Sub-root C15 C17 C18 C31 E13 E14 E21 E31 E51 G15 M13 M14

Leaf Number 2 4 3 3 2 3 2 3 3 9 2 3
Total Samples 138,754 28,118 40,442 23,457 5,656 1,708 34,074 2,174 14,481 11,055 48,590 74,932

Table 2: Dataset statistics: #(Doc) is the total number of documents;
#(Len) is the average tokens number per document; #(label) is the
number of class labels.

Dataset Time-steps #(Doc) #(Len) #(Labels)

NYTimes 1997.01-2006.12 627,915 629 26
RCV1 1996.09-1997.08 403,143 240 12

of word2vec [Mikolov et al., 2013] to train 100-dimensional
word embeddings from Wikipedia corpus based on CBOW
model. For training neural network models, we use mini-
batch stochastic gradient descent (SGD) optimizer to mini-
mize the corresponding objective functions, and the common
parameters are empirically set, such as batch size as 128 and
moving average as 0.999, etc.

To reduce error, we repeat each experiment five times in-
dependently and use the mean value as the final experiment
result. We also try our best to tune the models for both our
methods and baseline methods. As a result, all the experi-
ments of each method produce best results to our best efforts.

4.3 Results and Analysis
We compared state-of-the-art neural models (TextCNN,
RCNN, HAN) and their evolutionary versions based on tem-
poral smoothness framework (suffixed by TS) and diachronic
propagation framework (suffixed by DP) proposed in this pa-
per, and Table 3 and Table 4 are their experimental results for
multi-class classification in different time steps on NYTimes
and RCV1 datasets. We evaluate each dataset with two met-
rics, accuracy (higher is better) including a single value in
each time step and an average value in all time steps, and Std
(Standard Deviation, lower is better) among all time steps.

From the experimental results, it is observed that the evolu-
tionary methods clearly and consistently outperform the stan-
dard neural network models on different datasets and dif-
ferent time steps, especially for RCNN-DP, which achieves
the best performance compared with other methods (aver-
agely 3% improvement on NYTimes and 2% improvement on
RCV1). Generally, by applying evolutionary frameworks on
different neural network models, we improve the classifica-
tion accuracies in different time steps by 1%-6% on NYTimes
and by 1%-3% on RCV1. The results prove the effectiveness
of the proposed evolutionary frameworks.

The experimental results demonstrate the advantage of the
evolutionary methods in two aspects. First, by considering
the long-term data changes and interactions within consecu-
tive time steps, evolutionary models can effectively capture
the evolutionary information of features compared with tra-
ditional neural network models, and clearly help to increase
the classification accuracies on time-evolving data. Second,
over the whole time steps of each dataset, we can observe
that it can maintain a more stable and smooth result by ap-
plying evolutionary frameworks, which suggests that the evo-
lutionary methods are more robust against noise and more

suitable for handling the data fluctuations in non-stationary
scenarios. In addition, we can find the diachronic propaga-
tion framework achieves better performances than temporal
smoothness framework in most cases, which indicates that the
diachronic connection is more effective to adaptively learn
the evolution characteristic than a simple regularization term
of parameter distance. We also find that the evolutionary
methods bring about more improvements on the NYTimes
dataset than the RCV1 dataset. The reason could be that
the NYTimes dataset has a much longer time period, and
hence has a stronger long-term evolution, making it more
conducive to evolutionary learning. Overall, the proposed
evolutionary frameworks have good adaptability and efficacy,
and can be easily extended to different neural network models
and achieve much better classification performances on both
long-term and short-term time-evolving data.

4.4 Case Study
To better understand the effectiveness of proposed methods
on different evolutionary scenarios, we conduct more exper-
iments on three synthetic datasets introduced in Section 4.1,
and the results are shown in Figure 2-(a)(b)(c).

From the classification results of RCNN and its evolution-
ary versions on RCV1-org, RCV1-noise, and RCV1-drift, we
can consistently conclude the efficacy and stability of pro-
posed methods as analyzed in section 4.3. Moreover, com-
pared with the results on RCV1-org and RCV1-noise, we can
see that the standard RCNN is very sensitive to noise, and
the accuracy declines sharply as the noise ratio σ increases.
In contrast, by incorporating historical information to current
decision, the evolutionary versions RCNN-TS and RCNN-
DP are quite robust against noise. Compared with the re-
sults on RCV1-org and RCV1-drift, it is easy to find that
data drift greatly affects the performance of text classifica-
tion. When there is a stronger drift between different time
steps, the standard RCNN performs much worse, especially
near the inflection point of the data drift curve with maxi-
mum drift (time step = 6). Whereas, RCNN-TS and RCNN-
DP can still achieve meaningful results, which proves that the
proposed methods are quite effective to reduce the impact of
drift and to reflect the long-term data changes.

It is worth mentioning that RCNN-TS does not perform
as well on the RCV1-drift dataset as it does on the RCV1-
noise dataset. We believe the main cause is that the tempo-
ral smoothness framework focuses on smoothing the classi-
fiers by preventing large deviation of model parameters, thus
it is more robust against the data fluctuations. However, the
downside is it may also become insensitive with the data drift.
In contrast, the diachronic propagation framework achieves
a richer compositionality by incorporating the historical im-
pact into currently learned features through diachronic con-
nections, which is more beneficial to adaptively reflecting the
long-term changes while maintaining robustness to noise.



Table 3: Experimental results (%) on NYTimes dataset with 10 time steps from 1997-2006 (each year as a step).

Time-step 1 2 3 4 5 6 7 8 9 10 All Std
TextCNN 80.29 79.62 80.15 80.60 80.62 81.82 80.83 82.01 77.61 75.09 79.82 2.07

TextCNN-TS – 81.16 82.01 82.46 82.67 83.62 83.32 83.76 81.75 80.00 82.30 1.16
TextCNN-DP – 81.33 81.93 82.75 82.91 84.27 83.33 84.39 81.03 79.22 82.35 1.56

RCNN 79.72 79.78 80.20 80.82 80.91 81.58 80.60 81.32 76.94 74.65 79.64 2.19
RCNN-TS – 80.56 81.71 82.16 82.37 83.02 82.53 83.06 80.55 78.40 81.59 1.43
RCNN-DP – 81.77 82.30 82.92 83.33 83.83 83.47 84.47 82.08 80.76 82.77 1.08

HAN 68.09 67.90 68.06 67.97 67.58 67.50 66.86 68.26 66.18 64.97 67.25 1.01
HAN-TS – 68.04 68.40 68.30 67.96 67.93 67.64 68.45 67.36 66.36 67.83 0.62
HAN-DP – 68.49 69.01 68.60 68.76 68.50 68.14 69.13 67.43 66.24 68.25 0.86

Table 4: Experimental results (%) on RCV1 dataset with 12 time steps from 1996.09-1997.08 (each month as a step).

Time-step 1 2 3 4 5 6 7 8 9 10 11 12 All Std
TextCNN 92.60 93.46 93.02 91.44 92.39 92.93 91.73 93.00 93.61 91.89 93.62 92.61 92.70 0.72

TextCNN-TS – 93.87 93.58 92.99 93.49 93.90 93.52 94.09 94.40 93.83 94.52 94.30 93.86 0.43
TextCNN-DP – 94.27 93.98 93.35 94.15 94.64 94.01 94.71 95.36 94.37 94.80 94.50 94.38 0.50

RCNN 93.33 94.06 93.50 92.26 93.02 93.49 92.36 94.01 94.52 92.44 94.09 93.18 93.36 0.74
RCNN-TS – 94.50 94.20 93.60 94.10 94.23 93.82 94.38 94.80 93.95 94.40 94.06 94.19 0.32
RCNN-DP – 95.60 95.58 95.20 95.61 95.94 95.50 96.11 96.35 95.50 95.99 95.98 95.76 0.32

HAN 82.06 84.62 83.60 79.74 83.13 82.48 82.20 85.62 86.80 81.95 84.85 84.40 83.58 1.87
HAN-TS – 84.89 84.25 82.29 83.78 83.48 83.20 85.15 86.07 84.39 85.51 85.45 84.41 1.09
HAN-DP – 85.42 84.90 82.99 84.81 84.60 84.63 86.63 87.63 85.03 86.72 86.63 85.45 1.26
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(a) Case study on RCV1-org with half concepts.
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(b) Case study on RCV1-noise with different noise ratios.
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(c) Case study on RCV1-drift with S-type drift curve.
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(d) Parameter sensitivity of RCNN-TS on NYTimes.
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(e) Parameter sensitivity of RCNN-DP on NYTimes.
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(f) Training time of RCNN models on NYTimes.
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Figure 2: Case study, parameter sensitivity, and time consumption.

4.5 Parameter Sensitivity and Time Consumption
We illustrate the parameter sensitivity and time consumption
of the proposed frameworks on the NYTimes dataset.

Figure 2-(d) shows the experiment results of RCNN-TS
with different initial decay factors to weight historical dis-
tance penalty. As we observe, the accuracy reaches its op-
timum value when a = 0.01, while it becomes lower with
a larger or smaller value of a. Figure 2-(e) examines the
effects of increasing the depth of diachronic connections to
the RCNN-DP model. We find that the accuracy improves as
the depth increases, and the improvement becomes negligible
when the depth exceeds four. Figure 2-(f) reports the train-
ing time based on K80 GPUs. Compared with the standard
RCNN, the temporal smoothness framework does not bring
additional time consumption and the diachronic propagation
framework can achieve a great performance with only a min-
imal increase in the computational time.

5 Conclusion and Future Work
In this paper, we mainly focus on the evolutionary super-
vised learning problem, and present two evolutionary neu-
ral network frameworks for time-evolving text classifica-
tion. We conduct extensive experiments on two real-world
news datasets and three synthetic datasets. Empirical re-
sults demonstrate that our approaches consistently and signif-
icantly outperform standard neural networks on all datasets.
We believe evolutionary neural networks are very beneficial
to adaptively learn the long-term changes and interactions of
data in non-stationary scenarios, and can greatly improve the
current start-of-the-art performances in evolutionary learning
tasks, such as news topic classification, event classification
and tracing, etc. In the future, we aim to explore more about
the dynamic nature of data evolution like what is the con-
vergence of long-term data evolution, how to illustrate and
visualize the trend and feature of evolution, etc.
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