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ABSTRACT
Social media and News media have become an important platform
where people obtain latest events. Much research has been done
to detect topics and events in social or news streams, but lack of
comprehensiveness. In this paper, we propose a Knowledge-based
Event Mining (KEM) model to automatically detect events and gen-
erate evolution chain in multi-channel text streams. Specifically, we
merge the same entities and similar phrases by knowledge base and
incremental word2vec model. We adopt a 7-tuple event description
model to display events comprehensively and analyze their rela-
tionships. Finally, we generate an evolution chain for each event
incrementally. Our evaluation on a massive human-generated dataset
containing real world events demonstrates that our new model KEM
outperforms the baseline method both in efficiency and effectiveness.

1 INTRODUCTION
Real-world occurrences reported in internet are also called events.
Events detected from official and social media hold critical messages
that describe the situations during real-world occurrences. Mining
such knowledge is attractive to both policy makers monitoring public
sentiment and ordinary people obtaining event details. Consequently,
Event Detection and Evolution have received much attention in
recent years.

Previous event detection techniques include Bursty Detection [10,
18, 23, 24, 31, 37], Topic Model [3, 7, 8, 11, 30, 35] and other Clus-
tering Algorithms [1, 2, 4–6, 14–17, 19, 33, 34, 36, 41]. Merging
duplicates can be challenging in this task because different phrases
may share the same meaning and phrase semantics may change over
time. For example, “American president” was the most relavant to

“Obama” in 2010s, but related to “Trump” recently.
Moreover, all of these methods are single-channel-oriented, lack

of real-time and comprehensiveness. Because in some cases, events
are perceived on social media earlier than traditional news media,
but sometimes quite the reverse. For example, disastrous events
like Las Vegas Shooting was detected promptly in tweets. On the
contrary, political or military affairs are noticed only until the news
appear like the executive order. In order to ensure the real-time
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capability of the event detection model, we collect the multi-channel
text streams as the input of the model. Information redundancy in
long-text and insufficiency in short-text making hybrid-length text
streams processing the second challenge.

Limited research has been conducted on event evolution due to
its diversity. Previous studies represent event evolution by graph [13,
27, 38], but are not fit for short-text or long spanning event evolu-
tion. Evolution on short-text streams has attracted much attention
in recent years, some represent event evolution by volume on time
dimension [6, 12, 22], but considerably important events are discon-
tinuous in time. Some stuidies discover an event chain [20, 35], but
cannot show the evolution patterns.

Influential events emerge and evolve in multi-channels, such
as Weibo, News websites and Forums. Official and social media
describe events from different perspectives. All of the above provides
a complementary view of an event: Reasonably objective reports
and full view of opinions from home and abroad. Collecting them
together to provide a complete picture of an event can be a crucial
issue for both policy makers and ordinary people. In addition, a
“panoramic view” of the event will help users know how did it get to
here and make instant decision wisely. In sum, our major challenges
are merging multi-channel sources, hybrid-length text processing,
semantic drift problem and evolution chain generation.

In order to handle these challenges, we propose a Knowledge-
based Event Mining (KEM) model to automatically detect events and
incrementally generate evolution chain. We first model text streams
as an evolving phrase graph, and focus on significant phrases and
cliques they form. Then we introduce BabelNet [25] and incremental
word2vec model into event detection model to merge duplicates at
semantic level and solve semantic drift problem. We employ Incre-
mentally learning of the Hierarchical Softmax Function [29] instead
of Matrix Factorization [28] to save space complexity. BabelNet
is a very large, wide-coverage multilingual knowledge base. Sec-
ondly, we present a novel 7-tuple model based on event attributes,
including time, location, participants, keywords, emotion, summary
and most-related posts. Posts are microblogs, breaking news and
forum messages. Finally, we propose a method to generate event
evolution chain automatically based on multiple similarity measures.
We utilize BabelNet and word2vec to divide events into subgraphs.

We show an overview of the major steps of our KEM model for
event detection and evolution from hybrid-length text streams in
Figure 1. Note that as time rolls on, the phrase graph will be updated
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Figure 1: (a) Phrase graph captures strong correlation between phrases. Node size represents the phrase frequency. Edge thickness
indicates the correlation strength. Each event is annotated by a phrase subgraph, which is dark colored. (b) As time rolls on, typical
evolution patterns include born, evolute and merge. Each phrase graph is extended with detail phrases, which are light colored.

incrementally at each moment. Phrase graphs in the detection pro-
cess and the evolution process share the same key nodes, which are
made fully connected in the latter process.

The rest of this paper is organized as follows. Section 2 provides
a review of the related work. Section 3 presents our model and
algorithms. Section 4 evaluates the proposed approach and compares
it with the existing methods. Finally, Section 5 concludes the work.

2 RELATED WORK
In this section, we briefly introduce the related work published in the
areas of event detection and event evolution, which can be divided
into one of the following categories.

2.1 Event Detection in Social Streams
Impressive efforts have been devoted to the detection of significant
events in social streams. Mathioudakis et al. [23] introduced a moni-
tor that identifies events by sharp increase of keywords frequency
in a specified time slice. However, this monitor cannot distinguish
different events sharing the same keywords in bursty flow. Angel
et al. [2] and Agarwal et al. [1] both described the social streams
using a highly dynamic entity graph, from which they extracted
dense subgraphs as events. These methods suffer from the loss of
single-entity events or only post attributes like action of the entities.
Cheng et al. [7] modeled the word co-occurrence patterns in the
corpus to learn topics, making emerging topics inference effectively.
Topic models have also been refined to apply to short texts, but still
require prior knowledge, the topics are limited and not suitable for
our problems. Our KEM model employs BabelNet and incremental
word2vec model to introduce semantic information into phrase graph
generation and discover more fine-grained events.

2.2 Event Tracking in Social Streams
In general, Event Tracking is implemented online. Ge et al. [9] pre-
sented a learning-to-rank model to generate a topically relevant event
chronicles for certain period. But this method requires predefined
topics, which makes it not applicable to arbitrary event tracking,
since future events may belong to unknown topics. Pei et al. [27]
proposed a method to build story-teller for streaming social con-
tent, it constructs a sketch graph to summarize information in the

dynamic network by monitoring through a fading time window. It
recognizes evolution patterns by monitoring the development of
subgraphs. This method can only track event evolution in adjacent
windows, so it’s not suitable for events spanning over a long time.

2.3 Event Evolution with Correlation Building
Methods

Yang et al. [38] defined an event evolution scoring function to dis-
cover evolution relationships. This function utilizes the timestamp,
content similarity, temporal proximity, and document distributional
proximity to model the event evolution relationships, while times-
tamp can be misleading for long-term spanning events and it doesn’t
take vital attributes into consideration. Weiler et al. [35] used word
matrix, Lu et al. [20] took location and participants into consider-
ation and Zhou et al. [40] utilized TFIEF and Temporal Distance
Cost factor to measure the event relationships and generate an evolu-
tion chain. These methods miss semantic information and evolution
patterns. Our method belongs to this category and we design a
new events correlation building method in this paper to generate an
evolution chain.

In our approach, we adopt metrics including phrase subgraphs,
location and participants to evaluate event relationships. The key
issue of recognizing relationships is phrase subgraphs similarity mea-
surement. We introduce incremental word2vec model to measure it
and multilingual knowledge base to discover potential relationships.

3 MODEL AND ALGORITHMS
In this section, we introduce our method for event detection and
event evolution chain generation from multi-channel text streams
based on Knowledge Base, which we call KEM model.

3.1 Preliminaries
Phrase Graph Definition. Given text streams in a specified time

slice, we define the phrase graph as G(V,E), where V represents
phrases extracted from the text streams and we accept multiple
entities or verbs sharing the same meaning on one node, E represents
edges corresponding to co-occurrence relationships between phrases
in a text sliding window.
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Weight decay Formulation. Given a text sliding window, we
define the decay of edge weightW as:

W (d) =W (0) · 2−λ ·
d
l (1)

whereW (0) is a weight constant, λ is the decay factor, d is the phrase
count text window slide away from the beginning, l is the width of
window.

Word Semantic Similarity. Given two words w1 and w2, we
define the semantic similarity between them as cosine distance:

Sim(w1,w2) = vw1 �vw2 (2)

where v(w) is the unit vector of word w in word2vec model.
Event Definition. We denote an event as an 7-tuple:

E =< t ;desc; loc;par ;key; emo;posts > (3)

where t is the timestamp when the event is detected. desc is the
summary of the event, which is usually a short sentence. loc is
the location where the event happened. par is a set of participants
mainly involved in the event. key is a set of key phrases of the event.
emo is the emotion revealed by the event, which can be positive,
negative or neutral. posts is a set of posts related to the event, with
limit size of 5 after duplication removal.

Evolution Chain Definition. Given a latest event E0, we donate
the evolution chain of E0 as C0, represented as a sequential pattern:

En → En−1 ↔ En−2 → · · · → E1 → E0 (4)

where Ei → Ej means Ej is evoluted from Ei , Ei ↔ Ej means Ej is
merged by Ei . Chain C0 traces back the whole development of event
E0 along the timeline.

3.2 Phrase Graph Generation
Text streams within the same time sliding window construct a phrase
graph shown in Figure 1(a). Taking into account the speed of propa-
gation in social media and news channel, we set this interval to 600
seconds. There are a lot of noises from multi-channel text streams,
such as Twitter or Weibo, because they are usually written in an
informal way. Therefore, we perform standard text processing tasks
such as tokenization, stopword, punctuation, special character re-
moval, stemming and Name Entity Recognition using the Stanford
CoreNLP tool [21]. Specifically, entities and verbs are retained and
texts less than three phrases are eliminated to reduce noises.

Then we merge the same entities in different manifestations like
North Korean and DPRK, Russian President and Putin. We employ
BabelNet to merge multiple entities into one node and represent
it with a unique ID from the knowledge base. Therefore, an ID
sequence is generated for word2vec training and edge connections.

Useful information is mainly concentrated in the front part of the
long-text posts, far distant phrases may be irrelevant. For example,
some people just put multiple hashtages corresponding to real-time
hot events into one microblog to get on the top search list, in order
to promote the product or just comment on them together.

Under this condition, simply drawing edges between phrases by
co-occurrence relation in a post will produce interfering information,
so we introduce a text sliding window to draw weighted edges. If
two phrases co-occur in the same text window, a weighted edge
is drawn between the two associated nodes following Eq (1). For
multiple co-occurrence in a single post, we update the weight for
this post by accumulation.

We introduce knowledge base to discover strong relationship
outside the sliding window such as is a, child, spouse, founder. Then
we detect strong relationship between two phrases, if there is an edge
for this post between them, we update the weight toW (0), otherwise
we draw an edge with weightW (0).

After going through all posts, if there are edges with same end-
points distinguished by post ID, we merge them by adding their
weights together. Consequently, phrases with the same meaning con-
stitute V and phrase co-occurrence or strong correlation construct E
defined in 3.1.

3.3 Event Detection Model
The Event Detection part of our KEM model detect anomalous hot
phrases on the phrase graph using the method proposed by Yu et
al. [39]. In particular, we keep hot phrases and limited edges with
top weights extended from them, to construct a small anomalous
subgraph. Finally, we adopt an optimized overlapping community
finding algorithm [32] on the subgraph to find out events from these
hot phrases. This method defines community as k-clique: a set of
fully-connected k nodes. Cliques that share k − 1 nodes will be
merged. We regard each community as an event and represent it
with key phrases in the community temporarily.

Furthermore, we draw edges to merge cliques telling the same
thing using word2vec, a useful model to calculate the cosine distance
of words and represent them. We cannot simply adopt word2vec
model to merge nodes, because the cosine distance between phrase
vectors represents the possibility that sentences remain same mean-
ing after substitution, and it is not accurate enough at the semantic
level. Since the co-occurrence possibility changes from time to time,
we train hierarchical softmax function after every 12 time slices on
old corpus and new corpus generated in 3.2 incrementally.

When going through the anomalous subgraph, if cosine distance
between two nodes exceeds threshold ϕ, we will link edges from
each node to nodes connected with the other. We explain the drawing
process in Figure 2. If cos(b, e) exceeds ϕ, we connect b,d , b, f and
e, c, merging cliques abc, ade and node f to abcde f . For example,
nodes b and e could be kill and murder, injure and wound.
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Figure 2: The solid line represents co-occurrence or strong rela-
tionship, the dotted bidirectional arrow means cosine distance
of two nodes exceeds ϕ, the dotted line represents the edge con-
nected through word2vec model.

After finishing above steps, we fill the 7-tuple to make events
easy to understand. The key phrases are naturally set as key. We get
t , desc and posts using the method proposed in [20]. In particular,
if multiple news exist in the posts, the priority is to set desc as the
news headline containing most of the key phrases. Then we query
the knowledge base to discover loc and par from the key phrases.
The most frequently mentioned location is set as loc, people and
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organizations are put into set par . If the search from key phrases
fails, we will go through related posts and fill loc and par again.
Finally, we employ Bayes model for sentiment classification, the
details of which is beyond the scope of this paper.

Our event description model describes events from 7 aspects,
which is informative and understandable. An example is illustrated in
Table 1, which is about South Korea missile launch in Sept.15.2017.

Table 1: An Example of Event Description Model

t 2017/09/15 09:10
desc South Korean army launched a ballistic missile against

North Korea.
loc South Korea
par Kim Jong-un
key South Korea, ballistic missiles, peninsula, North Korea
emo negative
posts According to the North Korea Joint Staff, North Korea

launched a missile to the eastern waters of the penin-
sula this morning, the South Korean army immediately
launched the · · ·

3.4 Event Correlation Building Method
To build the event evolution graph, the main challenge is how to eval-
uate the relationship between two events. Given two events Ei and Ej ,
which are separately denoted as < ti ,desci , loci ,pari ,keyi , emoi ,
postsi > and < tj ,desc j , loc j ,par j ,keyj , emoj ,postsj >. We define
event similarity score function as:

Sim(Ei ,Ej ) = α · Simsubдraphs (keyi ,postsi ,keyj ,postsj )
+ β · Simloc (loci , loc j ) + γ · Simpar (pari ,par j )

(5)

where Simsubдraphs , Simloc , Simpar denote similarity measures of
phrase subgraphs, location and participants respectively. α , β , γ are
weight coefficients of these measures subjected to α + β + γ = 1.

Simsubдraphs evaluates the similarity between events’ phrase
subgraphs. We consider that global text similarity of events is not a
good choice and take Simsubдraphs as a significant feature, because
an event may has numerous sides and only part of them are useful.
We first construct sketch graph using key phrases and detail phrases.
Key phrases naturally inherit from phrases in the community during
the detection process. Detail phrases are top 10 phrases in related
posts co-occur with key phrases in a text sliding window. Then we
merge phrases with the same meaning through the method in 3.2.
We make key phrases fully connected and draw edges with each
phrase in a text sliding window. The final sketch graph is shown in
Figure 1(b), the dotted edges and light colored edges between key
nodes are added in this step.

Furthermore, we regard each three connected nodes containing at
least one key node as a subgraph, and calculate similarity of each
subgraph pair SimT . Each phrase could be represented by a unit
vector using word2vec, and SimT is calculated by average cosine
distance of phrase on each subgraph. We represent each triangle as
a triple vector Ti =< vi,1,vi,2,vi,3 >, where vi, j denotes the vector
of phrase j in Ti , and SimT is defined as:

SimT (Ti ,Tj ) = avд(vi,1,vi,2,vi,3) � avд(vj,1,vj,2,vj,3) (6)

On the basis of above equations, Simsubдraphs is defined as the
maximum value among all SimT (Ti ,Tj ) in two events:

Simsubдraphs = max
i ∈1,n, j ∈1,m

SimT (Ti ,Tj ) (7)

where n andm are the count of triangles in two events.
Events with evolution relationships mostly happen in the same

place. Simloc is employed to evaluate the similarity of events loca-
tion based on this assumption:

Simloc (loci , loc j ) =
{ 1 i f loci equals loc j ;
0 otherwise .

(8)

Similarly, we define Simpar as the Jaccard Coefficient of partici-
pant sets:

Sim(par )(pari ,par j ) =
pari ∩ par j
pari ∪ par j

(9)

After the similarity of two events was calculated, we define that
Ej is evolved from Ei if Sim(Ei ,Ej ) > ϵ and ti < tj , i.e.,

Ei → Ej i f

{
Sim(Ei ,Ej ) > ϵ
ti < tj

(10)

We tune ϵ to 0.45 in this paper through experiments on a manually
annotated dataset.

3.5 Event Evolution Chain Generation
In this chapter, we focus on building the whole evolution chain for
a given event E0. Since events may evolute into a very different
event, once given a new event, we find each event that has evolution
relationship with it and patch these events to the chain which the
most-related event falls in. It makes the evolution chain expand
incrementally and saves plenty of time.

First, we get events set by searching event index and adopt two-
layer filtering method introduced in [20] to reduce computational
complexity. After filtering, we get a candidate events set CS with
maximum size 20 for input event E0. Then we head to find all events
E ′ for input event E0 meeting the condition: E ′ → E0, making a set
of events: SE . Afterwards, we get evolution chain of event Emax
with the maximum similarity in SE , remove events from SE that
already occur in the chain, patch all events in SE to it, and reorder SE
in time order. Finally, we discover evolute and merge relationships
between events.

We define merging relationship as same events detected in con-
tinuous time span. We adopt thresholds ϵ ′ set as 0.8 to merge same
events. We merge events back to the earliest one and represent its
t as a time span striding across multi time slice, because breaking
news or buzz topic can keep high heat through a long period of time.

Algorithm 1 illustrates the method to generate event evolution
chain for given event E.

4 EXPERIMENTS
In this section, we first describe the dataset that we used for our
experiments and the parameters we adopt. We test our model KEM
from both efficiency and effectiveness against baseline methods.

Dataset: We have been collecting multi-channel text data and
detecting events since Feb.12.2016. Raw data from multi sources
including Weibo, Wechat, Forum and News Media is stored in HBase
and indexed by Elasticsearch. Representative media is shown in
Figure 1(a). Until now there has been about 2.9 billion weibos, 4.1
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Algorithm 1 Event Evolution Chain Generation.

Input: E
Output: Array Chain[]

1: simmax = 0;
2: posmax = 0;
3: Get events set CS by searching event index and two-layer filter-

ing;
4: for i = 1; i < size(CS); i + + do
5: Calculate Sim(E,CS[i]);
6: if Sim(E,CS[i]) > ϵ then
7: Insert CS[i] to the SE ;
8: if simmax < Sim(E,CS[i]) then
9: simmax = Sim(E,CS[i]);

10: posmax = size(SE ) − 1;
11: Get Chain[] of SE [posmax ] by querying event index;
12: Remove duplicates and put events from SE to Chain[];
13: Sort Chain[] by time ascending order;
14: j = 1;
15: repeat
16: Calculate Sim(Chain[j − 1],Chain[j]);
17: if Sim(Chain[j − 1],Chain[j]) > ϵ ′ then
18: Merge Chain[j] to Chain[j − 1];
19: Remove Chain[j] from Chain;
20: else
21: j + +;
22: until j > size(SE )
23: return Chain[];

million news, 6.7 million forum messages collected by crawlers
through API or web page, from which about 2 million events have
been detected .

Parameters: The parameters W (0), λ, l , α , β ,γ , ϵ , ϵ ′, ϕ,
n hashes, n tables, n neiдhbours used in this paper are listed in
Table 2.

Table 2: Parameters Setting

Parameter Default Description
W (0) 1 coefficient of edge weight
λ 0.05 decay factor of edge weight
l 10 width of the text sliding window
α 0.55 coefficient of subgraphs similarity
β 0.1 coefficient of location similarity
γ 0.15 coefficient of participant similarity
ϵ 0.45 threshold of evolution relationship
ϵ ′ 0.8 threshold for merging events
ϕ 0.78 threshold of merging phrases

n hashes 5 number of hashes in LSH
n tables 5 number of hash tables in LSH

n neiдhbours 10 number of neighbors to find in LSH

4.1 Event Detection
In this section we evaluate the efficiency and effectiveness of our
event detection model. 1 million multi-channel posts in one day are
randomly picked out from our post database and treated as the input
of Event Detection Model.

Baseline. Works like [20] first detect trending keywords us-
ing [39] and then adopt overlapping community detection method [26]
to discover events from these trending keywords in a time slice.

Efficiency
In this part we evaluate the efficiency of our model against [20].
Figure 3 shows the distribution of event count in each time slice by
our method and baseline method. Figure 4 shows the distribution of
average detection time for each detected event by the two methods.

We observe that the events stream peak occurs roughly between
eleven and half past thirteen, corresponding to people’s active period
within a day. The average whole detection time for each time slice is
56.6s with baseline method and 85.3s with our method. Meanwhile,
the average count of events we detect is 25.7, it is about 1.95 times as
mush as baseline method, the corresponding average detection time
for each event is 3.31s and 3.99s on each method. In other words, the
detection model increases the event count by 81.35% and improves
the computing speed by 13.94%. This is mainly because baseline
method connects all words in a single long report, and that makes
the word graph much complicated. Furthermore, the clique baseline
method detected contains too many words, it may fail retrieving
the posts with too many interference, so lots of computation time is
wasted.
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Effectiveness
In this part we compare our method and baseline method in terms of
detection effectiveness.
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Ground Truth. We extract 300 events from authoritative news
articles in September, 2017. These news all have enough related
posts obviously and news title is treated as summary for each event.

Evaluation. We use the standard metrics Precision(P), Recall(R),
F1-Measure(F1) and average time delay ∆T to quantize the effec-
tiveness of our model. They are calculated as follows:

P =
|G ∩C |
|C |

R =
|G ∩C |
|G |

F1 =
|2 · PR |
|P + R |

∆T =

∑
Ei ∈G∩C (Ti,detect −Ti,emerдe )

|G ∩C |

(11)

where G is the set of events in the ground truth dataset, C is the
set of events detected, Ti,emerдe is when event Ei takes place and
Ti,detect is when event Ei is detected.

Table 3 illustrates the P,R,F1,∆T of the two methods over the
dataset. The difference of recalls is much larger than precisions
mainly because the merging of same entities in 3.2 and edge recon-
nection in 3.3. These two operations lift heat of each node on the
graph to an anomalous level so more events are detected and the
accuracy is improved also. The difference between time delay is
because baseline method is unable to process multi-channel sources
and it takes time for event to spread across channels. Moreover, the
weakness for processing long text lead to the gap of effectiveness. It
is clear that our method achieve superior effectiveness over baseline
method.

Table 3: Detection Effectiveness Result

Method P R F1 ∆T/min
Baseline 0.5833 0.3733 0.4553 36.46

KEM 0.6133 0.6767 0.6434 14.23

4.2 Event Evolution
In this section we evaluate the effectiveness of our event evolution
model. We compare our algorithm with a baseline method and
ground truth generated from news to evaluate the effectiveness.

Ground Truth. 300 events are picked out from our event data-
base and treated as the input of the evolution model. These events all
have obvious evolution processes in real world and corresponding
reports of each evolution part of them are easy to find. We treat
news title as summary for each event and manually put them on an
evolution chain follow the time order.

Baseline. Works like [20] also use the combination of multiple
features to measure the relationships between two events. Content
similarity and temporal proximity are most widely used as a classic
method and the state-of-art method combine similarity of location,
participants and posts together, the latter beats the former evidently
in effectiveness aspect. Therefore we adopt the latter method as the
baseline. The similarity between events is computed as follows:

Sim(Ei ,Ej ) = α · Simposts (postsi ,postsj )
+ β · Simloc (loci , loc j ) + γ · Simpar (pari ,par j )

(12)

where Simposts (postsi ,postsj ) is related posts’ similarity between
Ei and Ej and it’s given by:

Simposts (postsi ,postsj ) =
∑
pk ∈postsi

∑
pl ∈postsj cos sim(pk ,pl )

|postsi | · |postsj |
(13)

where cos sim(pi ,pj ) is defined as follows:

Simdi ,dj =

∑N
k=1wi,k ·w j,k√∑N

k=1(wi,k )2 ·
√∑N

k=1(w j,k )2
(14)

where wi, j donates the frequency of term j in pi and N is the size of
vocabulary.

Specially, [20] didn’t extend the evolution chain incrementally
and the whole evolution chain is generated by a single event, so all
the events on the chain show high similarity with each other.

Evaluation. We use P, R, F1 mentioned before to evaluate the
effectiveness of our algorithm. In this evaluation, G is the set of
events in the ground truth dataset, C is the set of events in output
result for Eq (11).

Table 4 shows the P, R, F1 of our methods with different settings
of parameters α , β ,γ and baseline method comparing to the ground
truth. For our method, we find that the setting α = 0.6, β = 0.1,γ =
0.3 has the highest recall, the setting α = 0.7, β = 0.1,γ = 0.2,
which is the default setting, has the highest precision and F1 score,
and outperforms the baseline on each metrics.

Table 4: Evolution Effectiveness Result

KEM

α β γ P R F1
1 0.0 0.0 0.5569 0.2915 0.3827

0.9 0.1 0.0 0.4700 0.3197 0.3806
0.9 0.0 0.1 0.5805 0.4295 0.4937
0.8 0.1 0.1 0.5574 0.4730 0.5118
0.7 0.1 0.2 0.5896 0.5489 0.5685
0.7 0.2 0.1 0.5619 0.5649 0.5634
0.6 0.2 0.2 0.5159 0.5834 0.5476
0.6 0.1 0.3 0.4855 0.5947 0.5346
0.6 0.3 0.1 0.4731 0.5646 0.5148

Baseline 0.7 0.1 0.2 0.5441 0.4451 0.4897

Anomalously, we find the recall for baseline method in our experi-
ment is much lower than our method, we check the ground truth data
and find out that if two events share similar subgraphs which means
the the core elements of the event are similar, we add an evolution
relationship between them. But the baseline method consider them
as irrelevant events because it doesn’t reach the evolution threshold.
In our method, events don’t need to be similar enough to be in one
chain, which leads to the increase of recall.

5 CONCLUSION
In this paper, we propose a novel model called KEM for knowledge-
based event detection and evolution chain generation. We utilize
knowledge base and incremental word2vec to merge duplicates in
detection process. We combine the similarity measures of phrase
subgraphs, location and participants to evaluate the relationships
among events using knowledge base. We adopt two-layer filtering
to get the candidate events for each given event to save calculation
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time. Experiments show the high performance of our KEM model
in efficiency and effectiveness. For efficiency, our detection model
improves computing speed by 13.94% for each event. For effective-
ness, our KEM model outperforms baseline on both precision and
recall.

The future work is to visualize events as evolution graph to aid
human perception and explore more event evolution patterns.
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