Nevin’s Old Reading
List (pre-2006)
- Akaike, H. (1974). A new look at the statistical model
identification. IEEE Trans. Autom. Contr., 19:716-723.
- Akaike, H. (1983). Information measures and model
seletion. Bulletin of the International Statistical Institute, 50,
277-290.
- Alvord, W. G., Drummond, J. E., Arthur. L.O., Biggar,
R. J., Goedert, J. J., Levine, P. H., Murphy, E. L. Jr, Weiss, S.
H., Blattner, W. A. (1988). A method for predicting
individual HIV infection status in the absence of clinical
information. AIDS Res Hum Retroviruses, 4(4):295-304.
- Ben-Dor, A., Friedman, N., and Yakhini, Z. (2001). Class discovery in gene expression data.
In Proc. 5th Annual Inter. Conf. on Computational Molecular Biology
(RECOMB).
- Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian
clustering. Biometrics, 49, 803-821.
- Bartholomew, D. J. and Knott, M. (1999). Latent
variable models and factor analysis, 2nd edition. Kendall's
Library of Statistics 7. London:
Arnold.
- Blake, C.L. and Merz, C.J. (1998). UCI Repository of
machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,
CA: University of California,
Department of Information and Computer Science.
- Bohrnstedt, G. W. and Knoke D. (1994). Statistics
for social data analysis (3rd Edition). F. E. Peacock Publishers Inc.,
Itasca, Illinois.
- Breese, J., Heckerman, D., and Kadie, C.
(1998). Empirical analysis of predictive
algorithms for collaborative filtering. Proc. of the 14th
Conference on Uncertainty in Artificial Intelligence..
- Cheeseman, P. and Stutz, J. (1995). Bayesian
classification (AutoClass): Theory and results. In Fayyad, U.,
Piatesky-Shaoiro, G., Smyth, P., and Uthurusamy, R. (eds.), Advancesin
Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA.
- Cheng, J., Greiner, R., Kelly, J., Bell, DA and Liu, W.(2002).
Learning Bayesian Networks from Data: an Information-Theory Based
Approach. The Artificial Intelligence Journal, 137: 43-90.
- Chickering, D. M. (1995). A
transformational characterization of equivalent Bayesian network
structures. In Proc. 11th Conf. on Uncertainty in Artificial
Intelligence, Morgan Kaufmann Publishers, San Francisco, 87-98.
- Chickering, D. M. and Heckerman, D. (1997). Efficient approximations for the marginal
likelihood of Bayesian networks with hidden variables.Machine
Learning 29(2-3): 181-212.
- Chickering, D. M. (2002). Learning
Equivalence Classes of Bayesian-Network Structures. Journal of
Machine Learning Research, 2:445-498.
- Chickering, D. M. (2002b). Optimal
Structure Identification with Greedy Search. Technical Report
MSR-TR-2002-10, Microsoft Research.
- Chow, C. K. and Liu, C. N. (1968). Approximating
discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, IT-14(3): 462-467.
- Coleman, J. S. (1964). Introduction to Mathematical
Sociology. London:
Free Press.
- Connolly, D. (1993). Constructing hidden variables in Bayesian
networks via conceptual learning. In 10th Int. Conf. on Machine
Learning (ICML-93), Amherst, MA, USA, 65-72.
- Cowell, R. G., Dawid, A. P., Lauritzen, S. L.,
and Spiegelhalter, D. J. (1999). Probabilistic networks and
expert systems, Springer.
- Dougherty, J., Kohavi, R., and
Sahami, M. (1995). Supervised and unsupervised discretization of
continuous features. In Proc. of the 12th International
Conf. on Machine learning, 194-202.
- Durbin, R., Eddy, S., Krogh, A., and
Mitchison, G. (1998). Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University
Press.
- Eaton, W. W., Dryman, A., Sorenson, A., and McCutheon,
A. (1989). DSM-III Major depressive disorder in the community: A latent
class analysis of data from the NIMH epidemiologic catchment area
programme. British Journal of Psychiatry, 155, 48-54.
- Elidan, G., Lotner, N., Friedman, N. and Koller, D.
(2000). Discovering hidden variables: A structure-based approach. Advances
in Neural Information Processing Systems 13 (NIPS-00), Denver, CO,
USA,
479-485.
- Elidan, G. and N. Friedman (2001). Learning the
dimensionality of hidden variables. In Proc. 17th Conf. on Uncertainty
in Artificial Intelligence (UAI-01), Seattle, Washington,
USA,
144-151.
- Espeland, M. A. and Handelman, S. L. (1989).
Using latent class models to characterize and assess relative error in
discrete measurements. Biometrics, 45, 587-599.
- Everitt, B. S. (1993). Cluster Analysis. London: Edward
Arnold. [To Get]
- Ezawa, K. J. and Schuermann, T. (1995).
Fraud/uncollectible debt detection using a Bayesian network based
learning system: A rare binary outcome with mixed data structures.
In Proc. 11th Conf. on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers, San
Francisco, 157-166.
- Fraley, C. (1998). Algorithms for model-based Gaussian
hierarchical clustering. SIAM
J. Sci. Comput., 20 (1), 270-281.
- Friedman, N. (1997). Learning
belief networks in the presence of missing values and hidden variables.
In Proc. of 14th Int. Conf. on Machine Learning (ICML), Nashville, TN, USA, 125-133.
- Friedman, N. (1998). The
Bayesian structural EM algorithm. In Proc. 14th Conf. on
Uncertainty in Artificial Intelligence (UAI-98).
- Friedman, N., Geiger, D., and Goldszmidt, M.
(1997). Bayesian networks classifiers. Machine Learning,
29:131-163.
- Friedman, N., Ninio, M., Pe'er,
I., and Pupko, T. (2001). A structural EM algorithm for phylogenetic inference.
In Proc. 5th Annual Int. Conf. on Computational Molecular Biology
(RECOMB).
- Friedman, N., Ninio, M., Pe'er, I., and Pupko, T. (2002).A structural EM algorithm for phylogenetic
inference. Journal of Computational Biology, 9:331-353.
- Garrett, E. S. and Zeger, S. L.
(2000). Latent class model diagnosis. Biometrics, 56, 1055-1067.
- Geiger, D., Heckerman, D., and
C. Meek, C. (1996). Asymptotic Model
Selection for Directed Networks with Hidden Variables. in Proc.
12th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann
Publishers, San Francisco,
158-168.
- Geiger, D., Heckerman, D., King, H.,
and Meek, C. (2001). Stratified
exponential families: Graphical models and model selection. The Annals
of Statistics, 29 (1),:505-529.
- Gibson, W. A. (1959). Three multivariate models: Factor
analysis, latent structure analysis, and latent profile analysis.
Psychometrika, 24: 229-252.
- Glymour, C. and Cooper, G. F. (eds.) (1999). Computation,
causation, and discovery. AAAI Press, Cambridge, Mass.
: MIT Press
- Goodman, L. A. (1974a). The analysis of systems of
qualitative variables when some of the variables are unobservable. Part I-A
Modified latent structure approach. American Journal of Sociology,
7(5), 1179-1259.
- Goodman, L. A. (1974b). Exploratory latent
structure analysis using both identifiable and unidentifiable models. Biometrika,
61, 215-231.
- Green, P. (1998). Penalized likelihood. In Encyclopedia
of Statistical Sciences, Update
Volume 3, S. Kotz, C. Read, D. L. Banks (eds.), 578-586, John Wiley \& Sons.
- Hagenaars, J. A. (1988). Latent structure models
with direct effects between indicators: local dependence models. Sociological
Methods and Research, 16, 379-405.
- Hagenaars, J. A. and McCutcheon A. L. (eds.) (2002). Advances
in latent class analysis. Cambridge University
Press.
- Hanson, R., Stutz, J., and
Cheeseman, P. (1991). Bayesian
classification with correlation and inheritance. Proc. 12th. International Joint
Conference on A.I. (IJCAI-91), Sydney, New South Wales, Australia, 2, 692-698, Morgan Kaufmann.
- Haughton, Dominique M. A.
(1988). On the choice of a model to fit data from
an exponential family. Annals of Statistics, 16(1), 342-355.
- Heckerman, D (1995). A
tutorial on learning with Bayesian networks. In Michael J.
Jordan (ed.) (1998). Learning in graphical models. Kluwer Academic
Publishers.
- Heckerman, D., Geiger, D. and
Chickering, D. M. (1994). Learning
Bayesian Networks: The Combination of Knowledge and Statistical Data. Proc.
10th Conf. Uncertainty in Artificial Intelligence, 293-301.
- Hofman, T. (1999). The cluster-abstraction model: Unsupervised learning of topic hierarchies
from text data. In Proc. 20th. International Joint Conference
on A.I. (IJCAI-99).
- Jensen, F. V. (2001). Bayesian networks and decision
graphs. Springer.
- Jordan, K. J. (ed.) (1998). Learning in graphical
models. Kluwer Academic Publishers.
- Kass, R. and Raftery A. (1995). Bayes factors. Journal of the American
Statistical Association, 90:773-795.
- Kervrann, C. and Heitz F. (1998). A hierarchical Markov modeling approach for the
segmentation and tracking of deformable shapes. Graphical Models
And Image Processing, 60(3), 173-195.
- Kaufman, L. and Rousseeuw, P. J. (1990). Finding
groups in data: An introduction to cluster analysis. New York: John Wiley and Sons,
Inc..
[To Get]
- Kim, J. and T. Warnow. 1999. Tutorial on phylogenetic
tree estimation. The 7th International Conference Intelligent Systems
for Molecular Biology, Heidelberg.
- Kishino, H., Miyata, T., and Hasegawa, M.
(1990). Maximum likelihood inference of protein phylogeny and the origin
of the chloroplasts. J. Mol. Evol. 31, 151-160.
- KOCKA, T. and CASTELO, R. (2001). Improved
Learning of Bayesian Networks. In Proc. 17th Conf. on
Uncertainty in Artificial Intelligence, 269-276.
- Kohlmann, T., and Formann, A. K. (1997). Using
latent class models to analyze response patterns in epidemiologic mail
surveys. Rost, J. and Langeheine, R. (eds.). Applications
of latent trait and latent class models in the social sciences.
Muenster: Waxman Verlag.
- Kohavi, R. and John, G. (1997). Wrappers for
feature subset selection. Artificial Intelligence Journal,
special issue on relevance, 97(1-2), 273-324.
- Kononenko, I. (1991).
Semi-naive Bayesian classifier. In Proc. 6th European Working Session
on Learning, Berlin:
Springer-Verlag, 206-219.\
- Langley, P. and Sage, S. (1994). Induction of selective
Bayesian classifiers. In Proc. 10th Conf. on Uncertainty in Artificial
Intelligence, Morgan Kaufmann Publishers, San Francisco, 339-406.
- Lanterman, A. D. (2001). Schwarz, Wallace, and Rissanen: Intertwining
themes in theories of model order estimation. International
Statistical Review, 69(2), 185-212.
- Lauritzen,
S. L. (1995). The EM-algorithm for
graphical association models with missing data. Computational
Statistics and Data Analysis 1, 191-201.
- Lazarsfeld, P. F., and Henry, N.W. (1968). Latent
structure analysis. Boston:
Houghton Mifflin.
- McLachlan, G.J. and Krishnan, T. (1997). The EM
algorithm and extensions. Wiley Interscience.
- Martin, J. and VanLehn, K. (1994). Discrete factor
analysis: learning hidden variables in Bayesian networks. Technical Report
LRGC_ONR-94-1, Department of Computer Science, University of Pittsburgh.
- Meila-Predoviciu, M. (1999). Learning with mixtures of
trees, Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, MIT.
- Meek, C. (1995). Strong
completeness and faithfulness in Bayesian networks. In Proc. of
11th Conference on Uncertainty in Artificial Intelligence, 411-418.
- Meek, C. (1997). Graphical models: Selection causal
and statistical models. Ph.D. Thesis, Carnegie Mellon
University.
- Olave, M., Rajkovic, V., and Bohanec,
M. (1989). An application for admission in public school systems. In
I. Th. M. Snellen and W. B. H. J. van de Donk and J.-P. Baquiast
(eds.). Expert Systems in Public Administration,
Elsevier Science Publishers: North
Holland, 145-160.
- Pazzani, M. J. (1995). Searching for dependencies in
Bayesian classifiers. In Proc. 5th Int. Workshop on AI and Statistics,
Ft. Lauderdale, FL..
- Pearl, J. (1988). Probabilistic
Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Palo
Alto.
- Rusakov, D. and Geiger, D. (2002). Asymptotic Model Selection for Naive Bayesian
Networks. UAI-02.
- Rusakov, D. and Geiger, D. (2003). Automated Analytic Asymptotic Evaluation of
Marginal Likelihood for Latent Models. UAI-03.
- Schwarz, G. (1978). Estimating
the dimension of a model. Annals of Statistics, 6(2), 461-464.
- Silva, R., S., Scheines,
R., Glymour, C., and Spirtes P. (2003). Learning Measurement Models for Unobserved
Variables. . In Proc.
of 19th Conference on Uncertainty in Artificial Intelligence, 543-550.
- Silva, R., S., Scheines,
R., Glymour, C., and Spirtes P. (2005). Learning the Structures of Linear Latent Variable
Models.
- Singh, B. B., Berman, B. M., Simpson, R. L., and
Annechild, A. (1998). Incidence of premenstrual
syndrome and remedy usage: A national probability sample study.
Alternative Therapies, 4(3): 75-79.
- Spirtes, P., Glymour, C., and Scheines, R.
(1993). Causation, prediction, and search. Springer-Verlag.
- Spirtes, P. and Meek (1995). Learning Bayesian networks with discrete variables
from data. In Proc. of First International Conference on Knowledge
Discovery and Data
Mining,
294-299.
- Sullivan, P.F., Smith, W. and
Buchwald, D. (2002). Latent
class analysis of symptoms associated with chronic fatigue syndrome and
fibromyalgia. Psychological Medicine, 32, 881-888.
- Swofford, D. L. (1998). PAUP* 4.0 - Phylogenetic
Analysis Using Parsimony (*and Other Methods). Sinauer Assoc., Sunderland, MA.
- Thrun, S.B. and 20 others (1991). The MONK's Problems: A Performance Comparison of
Different Learning Algorithms. CMU-CS-91-197, Carnegie Mellon
University.
- Toutanova, K., Chen, F., Popat, K.,
and Hofmann T. (2001). Text
Classification in a Hierarchical Mixture Model for Small Training Sets.
In Proc. 10th International Conference on Information and Knowledge
Management.
- van der Putten, P. and van Someren, M. (eds.) (2002).
COIL Challenge 2000: The insurance company case. Sentient Machine
Research, Amsterdam.
- Verma, T. and Pearl,
J. (1991). Equivalence and synthesis of causal
models. In Proc. of 6th Conference on Uncertainty in Artificial
Intelligence, 220-227.
- Vermunt, J.K. and Magidson, J. (2000).
Latent GOLD User's Guide. Belmont,
Mass.: Statistical
Innovations, Inc..
- Vermunt, J.K. and Magidson, J. (2002). Latent
class cluster analysis. In Hagenaars, J. A. and McCutcheon A. L.
(eds.). Advances in latent class analysis. Cambridge University
Press. [To Get]
- Wasmus, A., Kindel, P., Mattussek, S. and Raspe, H. H.
(1989). Activity and severity of rheumatoid arthritis in Hannover/FRG and
in one regional referral center. Scandinavian Journal of Rheumatology,
Suppl. 79, 33-44.
- Zupan, B., Bohanec, M., Bratko,
I. and Demsar, J. (1997). Machine learning by function decomposition.
ICML-97.
- Zhang, N. L. (2002). Inference in Bayesian networks:
The role of context-specific independence. International Journal of
Information Technology & Decision Making, 1(1): 91-119.
Latent Variable
Models
- Borsboom, D., Mellenbergh, G. J., and van He
- erden, J. (2003).The theoretical status of latent
variables. {\em Psychological Review}, 110 (2), 203-219.
- Sobel, M. E. (1994). Causal
Inference in latent variable models. In von Eye,
A. and Clogg,
C. C (eds.) (1994). Latent variables
analysis: applications for developmental research. Thousand Oaks, Calif.:
Sage, 3-35.
- Uebersax, J. (2000). A practical guide to local
dependence in latent class models. http://ourworld.compuserve.com/homepages/jsuebersax/condep.htm.
- Uebersax, J. (2001). Latent class analysis frequently
asked questions. http://ourworld.compuserve.com/homepages/jsuebersax/faq.htm.
- von Eye,
A. and Clogg,
C. C (eds.) (1994).
Latent
variables analysis: applications for developmental research. Thousand Oaks, Calif.:
Sage.
· Papers by Jay Magidson and Jeroen
Vermunt on latent class modelling
· Softare for Inference of evolutionary trees. Related to HLCM: PROTML(Parent
introduction) , PAUP(Branch
swapping)
· D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis. Molecular
Systematics, chapter Phylogenetic Inference, pages 407--514. Sinauer
Associates, Inc., Sunderland,
MA, 1996.
1.