Book:

·         N.L. Zhang and H.P. Guo (2006). Introduction to Bayesian Networks. Science Press, Beijing. Lecture notes based on the book.

Journal Articles

1.    A. H. Liu, Leonard K.M. Poon, T.F. Liu, N. L. Zhang (2014). Latent tree models for rounding in spectral clustering. Neurocomputing, Volume 144, 20 November 2014, Pages 448–462

2.    Y Zhao, NL Zhang, T Wang, Q Wang (2014), Discovering Symptom Co-Occurrence Patterns from 604 Cases of Depressive Patient Data Using Latent Tree Models, The Journal of Alternative and Complementary Medicine. doi:10.1089/acm.2013.0178. January 20, 2014.

3.    T.F, Liu, N. L. Zhang, P. X. Chen, A. H.Liu, L. K. M. Poon, and Yi Wang (2013). Greedy learning of latent tree models for multidimensional clustering. Machine Learning, doi:10.1007/s10994-013-5393-0.

4.    R. Mourad, C. Sinoquet, N. L. Zhang, T.F. Liu and P. Leray (2013). A survey on latent tree models and applications. Journal of Artificial Intelligence Research, 47, 157-203 , 13 May 2013. doi:10.1613/jair.3879

5.    L.K.M. Poon, N.L. Zhang, T.F. Liu, A.H. Liu (2013). Model-Based Clustering of High-Dimensional Data: Variable Selection versus Facet Determination. International Journal of Approximate Reasoning. 54(1), 196-215. http://dx.doi.org/10.1016/j.ijar.2012.08.001

6.    Y. Wang, N. L. Zhang, T. Chen, L.K.M. Poon (2013). LTC: A latent tree approach to classification. International Journal of Approximate Reasoning. 54(4), 560-572.   http://dx.doi.org/10.1016/j.ijar.2012.06.024.

7.    Z.X. Xu, N. L. Zhang, Y.Q. Wang, G.P. Liu, J. Xu, T. F. Liu, and A. H. Liu (2013). Statistical Validation of Traditional Chinese Medicine Syndrome Postulates in the Context of Patients with Cardiovascular Disease. The Journal of Alternative and Complementary Medicine. 18, 1-6. http://online.liebertpub.com/doi/abs/10.1089/acm.2012.0487

8.    T. Chen, N. L. Zhang, T. F. Liu, Y. Wang, L. K. M. Poon (2012). Model-based multidimensional clustering of categorical data. Artificial Intelligence,  176(1), 2246-2269. doi:10.1016/j.artint.2011.09.003.

9.    N. L. Zhang, S. H. Yuan, T. F. Wang, et al. (2011). Latent Structure Analysis and Syndrome Differentiation for the Integration of Traditional Chinese and Western Medicine (I): Basic Principle. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Materia. 13(3), 498-502.

10.  N. L. Zhang, Z. X. Xu, Y. Q. Wang, et al. (2012). Latent Structure Analysis and Syndrome Differentiation for the Integration of Traditional Chinese and Western Medicine (II): Joint Clustering. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Materia. Accepted.

11.  S. H. Yuan, T. F. Wang, N. L. Zhang (2011). The Inception of TCM Syndrome Types in Human Cognitation and Dataming Methods for TCM Data. Journal of Traditional Chinese MedicineVol 52, No 4, 284-287.

12.  T. F. Wang, N. L. Zhang, Y. Zhao, Y. Wang et al. (2009). Latent structure models and their applications in TCM syndrome research. Journal of Beijing University of Chinese Medicine,32(8):519-526.

13.  Y. B. Gong, N. L. Zhang, S. H. Gao, et al (2009). A study of symptom distribution regularities of Type II Diabetes using latent structure models. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Materia. 4(4): 516-521.  

14.  Y. Wang, N. L. Zhang and T. Chen (2008). Latent tree models and approximate inference in Bayesian networks. Journal of Artificial Intelligence Research, 32, 879-900. 

15.  N. L. Zhang,  S. H. Yuan, T. Chen and  Y. Wang (2008).  Statistical Validation of TCM Theories. Journal of Alternative and Complementary Medicine, 14(5):583-7

16.  N. L. Zhang, S. H. Yuan, T. Chen and Y. Wang (2008). Latent tree models and diagnosis in traditional Chinese medicine. Artificial Intelligence in Medicine. 42: 229-245.

17.  N. L. Zhang, Y. Wang and T. Chen (2008). Discovery of latent structures. Experience with the COIL Challenge 2000 dataJournal of Systems Science and Complexity. 21: 1-12.

18.  N. L. Zhang, S.H. Yuan, Y. Wang and T. Chen (2008). Latent structure models and syndrome differentiation in traditional Chinese medicine (II): Analysis of Kidney Deficiency Data. Journal of Beijing University of Chinese Medicine,31(9):584-587.

19.  S.H. Yuan, N. L. Zhang, T. Chen, and Y. Wang (2008). Latent structure models and syndrome differentiation in traditional Chinese medicine (III): Model-based syndrome differentiation versus syndrome differentiation by experts. Journal of Beijing University of Chinese Medicine, 31(10):659-663.

20.  N. L. Zhang, X. Z. Zhou, B. Y. Liu. And L. Y. He (2007). Interpreting results of variable clustering in TCM research.  Chinese Journal of Information on Traditional Chinese Medicine. No. 7.

21.  N. L. Zhang and S.H. Yuan (2006). Latent structure models and syndrome differentiation in traditional Chinese medicine (I): The basic idea and tools for latent structure analysis. Journal of Beijing University of Chinese Medicine, 29(6):365-369.

22.  N.L. Zhang and H.P. Guo (2006). Introduction to Bayesian Networks. Science Press, Beijing.

23.  Weihong Zhang and N. L. Zhang (2005). Restricted Value Iteration: Theory and Algorithms, Journal of Artificial Intelligence Research. 23: 123-165.

24.  T. Chen, T. Kocka, and N. L. Zhang (2005).Effective Dimensions of Partially Observed Polytrees. International Journal of Approximate Reasoning. 38(3): 311-332.

25.  T. D. Nielsen, Nevin Lianwen Zhang: Special Issue on ECSQARU-2003: The Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty: Message from the Guest Editors. Int. J. Approx. Reasoning 38(3): 215-216 (2005)

26.  N. L. Zhang (2004). Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research, 5(6):697--723, 2004.

27.  N. L. Zhang, T. D. Nielsen, and F. V. Jensen (2004). Latent variable discovery in  classification models. Artificial Intelligence in Medicine, 30(3): 283-299.

28.  N. L. Zhang and Tomas Kocka (2004). Effective dimensions of hierarchical latent class models. Journal of Artificial Intelligence Research, 21: 1-17.

29.  D. Poole and N. L. Zhang (2003). Exploiting contextual independence in probablisitic inference. Journal of Artificial Intelligence Research, 18: 263-313.

30.  N. L. Zhang (2002), Inference in Bayesian networks:  The role of context-specific independence, International Journal of Information Technology and Decision Making (IJITDM), 1(1): 91-119.

31.  N. L. Zhang and Zhang, W. (2001) "Speeding up the Convergence of Value Iteration in Partially Observable Markov Decision Processes", Journal of Artificial Intelligence Research, 14: 29-51.

32.  N. L. Zhang (1998), Probabilistic Inference in Influence Diagrams, Computational Intelligence , 14(4):  475-497. A shorter version appeared in UAI-98.

33.  N. L. Zhang (1998), Computational properties of two exact algorithms for Bayesian networks, Applied Intelligence, 9(2): 173-183.

34.  N. L. Zhang and W. Liu (1997), A model approximation scheme for planning in partially observable stochastic domains, Journal of Artificial Intelligence Research, 7: 199-230.

35.  N. L. Zhang and Li Yan (1997), Independence of Causal Influence and Clique Tree Propagation, International Journal of Approximate Reasoning, 19: 335-349.

36.  N. L. Zhang and D. Poole (1996), Exploiting causal independence in Bayesian network inference,Journal of Artificial Intelligence Research, 5: 301-328.

37.  N. L. Zhang (1996a), Irrelevance and parameter learning in Bayesian networks, Artificial Intelligence, An International Journal, 88: 359-373.

38.  N. L. Zhang R. Qi and D. Poole (1994a) A computational theory of decision networks, International Journal of Approxi mate Reasoning, 1994, 11 (2): 83-158. Soft copy of the paper is not available but click here for a postscript file that is identical to the paper except for the format and page numbers.

39.  N. L. Zhang (1993). "Structural and functional quantization of vagueness", Fuzzy Sets and Systems, 55: 51-60, 1993.

40.  N. L. Zhang (1993). "Studies on hypergraphs I: hyperforests", Discrete Applied Mathematics,  42: 95-112, 1993.

41.  L. Zhang (1986), Weights of evidence and internal conflict for support functions, Information Science, 38: 205-212.

Conference Articles

  1. April Liu, Kin Man Poon, Nevin L. Zhang (2015). Unidimensional clustering of discrete data using latent tree models. AAAI 2015.
  2. Tengfei LIU, Nevin Zhang, Peixian Chen (2014). Hierarchical Latent Tree Analysis for Topic Detection. ECML PKDD 2-14.
  3. Nevin L. Zhang, Xiaofei Wang and Peixian Chen (2014). A Study of Recently Discovered Equalities about Latent Tree Models using Inverse Edges. PGM 2014.
  4. G. Cui, N. Zhang and Y. Wang, (2012). Multidimensional Clustering Using Latent Feature Models for Consumer Segmentation and Forecasting.  Proceedings of the 4th Annual American Business Research Conference, June 4-5, New York City. Best paper award (marketing).
  5. L.K.M. Poon, A.H. Liu, T.F. Liu, N. L. Zhang (2012). A Model-Based Approach to Rounding in Spectral Clustering  (UAI-12), software.
  6. T.F.Liu, N. L. Zhang, A.H. Liu, L.K.M. Poon (2012). A Novel LTM-based Method for Multidimensional Clustering.  European Workshop on Probabilistic Graphical Models (PGM-12),  203-210. software
  7. Y. Wang, N. L. Zhang, T. Chen, and K. M. Poon (2011). Latent tree classifier. Eleventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-11).  Belfast, June 29 - July 1, 410-421.
  8. N. L. Zhang, R. S. Zhang, T. Chen (2011). Discovery of Regularities in the Use of Herbs in Traditional Chinese Medicine Prescriptions. AI-TCM Workshop, PAKDD2011Shenzhen, China, May 24-27, 2011, 8 pages.
  9. T. Chen, N. L. Zhang, and Y. Wang (2010). The Role of Operation Granularity in Search-Based Learning of Latent Tree Models. In The First International Workshop on Advanced Methodologies for Bayesian Networks (AMBN 2010). November 18-19, Tokyo.
  10. Poon, L. K. M., N. L. Zhang, T. Chen, Tengfei Liu, and Y. Wang (2010). Using Bayesian Networks for Model-Based Multiple Clusterings: An Example of Exploratory Analysis on NBA Data. In The First International Workshop on Advanced Methodologies for Bayesian Networks (AMBN 2010), November 18-19, Tokyo.
  11. N. L. Zhang and S. H. Yuan (2010).  Statistical Truths in Traditional Chinese Medicine Theories. ICTCM Workshop, 2010 IEEE International Conference on Bioinformatics & Biomedicine (BIBM), 18 - 21 December Hong Kong.
  12. L. K. M. Poon, N. L. Zhang, T. Chen, and Y. Wang (2010). Variable selection in model-based clustering: To do or to facilitate. ICML-10.

13.   Tao Chen, N. L. Zhang, and Yi Wang (2008). Efficient Model Evaluation in the Search-Based Approach to Latent Structure Discovery. In Proceedings of the Fourth European Workshop on Probabilistic Graphical Models (PGM-08), 57-64.

14.   Y. Wang, N. L. Zhang. T. Chen (2008). Latent Tree Models and Approximate Inference in Bayesian Networks, AAAI-08.

15.   N. L. Zhang, S. H. Yuan, T. Chen, and Y. Wang (2007). Hierarchical Latent Class Models and Statistical Foundation for Traditional Chinese Medicine (long version), 11th Conference on Artificial Intelligence in Medicine (AIME 07), 07-11, July 2007,   Amsterdam, The Netherlands.

16.   N. L. Zhang (2007). Discovery of Latent Structures: Experience with the CoIL Challenge 2000 Data Set. International Conference on Computational Science (ICCS 2007). May 27-30, 2007.

17.   T. Chen and N. L. Zhang (2006). Quartet-based learning of shallow latent variables. In Proceedings of the Third European Workshop on Probabilistic Graphical Model,59-66 , September 12-15, 2006.

18.   Y. Wang and N. L. Zhang (2006). Severity of local maxima for the EM algorithm: experiences with hierarchical latent class models. In Proceedings of the Third European Workshop on Probabilistic Graphical Model, 301-308, September 12-15, 2006.

19.   T. Chen and N. L. Zhang (2006). Quartet-Based Learning of Hierarchical Latent Class Models: Discovery of Shallow Latent Variables.9th International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale, Florida, January 4-6, 2006.

20.   N. L. Zhang and T. Kocka (2004). Efficient Learning of Hierarchical Latent Class Models. Proc. of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2004), Boca Raton, Florida,  November 15-17.

21.   T. Kocha and N. L. Zhang (2003). Effective dimensions of partially observed polytrees. Proc. of the 7th European Conference on Symbolic and Quantitave Approaches to Reasoning with Uncertainty (ECSQARU-03), 184-195.

22.   N. L. Zhang (2002). Hierarchical latent class models for cluster analysis. AAAI-02, 230-237.

23.   T. Kocka and N. L. Zhang (2002). Dimension correction for hierarchical latent class models. Proc. of the 18th Conference on Uncertainty in Artificial Intelligenc (UAI-02), 267-274.

24.   N. L. Zhang and W. Zhang (2001b). Space-progressive value iteration: An anytime algorithm for a class of POMDPs. Proc. of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning  with Uncertainty (ECSQARU-01), 72-83.

25.   S.P.M. Choi, D.Y. Yeung, N.L. Zhang (1999) . An environment model for nonstationary reinforcement learning. Advances in Neural Information Processing Systems 12 (NIPS*99), pp.987-993, 1999.

26.   N. L. Zhang and D. Poole (1999), On the role of context-specific independence in Probabilistic Reasoning IJCAI-99, 1288-1293.

27.   N. L. Zhang , S. S. Lee, and W. Zhang (1999), A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes in Proc. of the 15th Conference on Uncertainties in Artificial Intelligence, 696-703..

28.   S. P. M. Choi , D. Y. Yeung, and N. L. Zhang (1999), Hidden-mode Markov decision processes, Reinforcement Learning , IJCAI'99 Workshop on neural, symbolic, and reinforcement methods for sequence learning, 9-14.

29.   Y. Shen, D.L. Lee, N. L. Zhang (1999), A Distributed Search System Based on Markov Decision Process , ICSC'99, December 1999, Hong Kong.

30.   N. L. Zhang and Stephen S. Lee (1998), Planing with Partially Observable Markov Decision Processes: Advances in Exact Solution Methods in Proc. of the 14th Conference on Uncertainties in Artificial Intelligence.

31.   N. L. Zhang (1998), Context-specific independence, decomposition of conditional probabilities, and inference in Bayesian networks, Proc of the Fifth Pacific Rim International Conference on Artificial Intelligence, November 22-27, Singapore, pp. 411-423.

32.   N. L. Zhang (1998), Probabilistic inference in influence digrams, Proc. of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp.514-522.

33.   N. L. Zhang and W. Liu (1997), Region-Based Approximations for Planning in Stochastic Domains in Proc. of the 13th Conference on Uncertainties in Artificial Intelligence.

34.   N. L. Zhang and W. Zhang (1997), Fast Value Iteration for Goal-Directed Markov Decision Processes in Proc. of the 13th Conference on Uncertainties in Artificial Intelligence.

35.   N. L. Zhang and L. Yan (1997), Independence of causal influence and clique tree propagation, {\em Proc. of the Thirteenth Conference on Uncertainty in Artificial Intelligence}, pp. 481-488.

36.   Anthony Cassandra, Michael L. Littman, and N. L. Zhang (1997), Incremental Pruning: A Simple, Fast, Exact Algorithm for Partially Observable Markov Decision Processes in Proc. of the 13th Conference on Uncertainties in Artificial Intelligence.

37.   N. L. Zhang (1995), Inference with causal independence in the CPSC network, in Proc. of the 11th Conference on Uncertainties in Artificial Intelligence, Montreal, Canada, August.

38.   N. L. Zhang and D. Poole (1994a), Intercausal independence and heterogeneous factorization,i in Proc. of the 10th Conference on Uncertainties in Artificial Intelligence., Seattle, USA, July 29-31.

39.   N. L. Zhang and D. Poole (1994b), A simple approach to Bayesian network computations, in Proc. of the 10th Canadian Conference on Artificial Intelligence, Banff, Alberta, Canada, May 16-22.

40.   N. L. Zhang, R. Qi, and D. Poole (1994b), Minimizing decision tables in influence diagrams, in Selecting Models from Data : Artificial Intelligence and Statistics IV, P. Cheeseman, R.W. Oldford, eds., Springer-Verlag.

41.   N. L. Zhang, R. Qi, and D. Poole (1993), Incremental computation of the value of perfect information in stepwise-decomposable influence diagrams, in Proc. of the 9th International Conference on Uncertainty in Artificial Intelligence.

42.   N. L. Zhang, R. Qi, and D. Poole (1992), Stepwise-decomposable influence diagrams, in Proc. of the 3rd Conference on Knowledge representation, Cambridge, Mass. USA, October 26-29.

Book/Book Chapters

1.    T. D. Nielsen and N. L. Zhang (eds.) (2003). Symbolic and Quantitative Approaches to Reasoning with Uncertainty:  Proceedings of the 7th European Conference. Springer.

2.    S.P.M. Choi, D.Y. Yeung, N.L. Zhang (2000), Hidden-mode Markov decision processes for nonstationary sequential decision making, in Sequence Learning: Paradigms, Algorithms, and Application , R. Sun and G. Lee (eds.), Springer-Verlag, Berlin. 264-287.

3.    L. Zhang (1994), Interpretations of belief functions, in Advances in the Dempster-Shafer Theory of Evidence, M. Fedrizzi et al (eds). John Wiley \& Sons, Inc., New York, pp. 51-95.

4.    N. L. Zhang, R. Qi, and D. Poole (1994b), Minimizing decision tables in influence diagrams, in Selecting Models from Data : Artificial Intelligence and Statistics IV , P. Cheeseman and R.W. Oldford (eds.), Springer-Verlag.

Thesis

N. L. Zhang (1994).  A computational theory of decision networks. Ph.D. Dissertation. Department of Computer Science, University of British Columbia.