More about HKUST
Towards Efficient and Practical Network Optimization for Big Data Analytics
The Hong Kong University of Science and Technology Department of Computer Science and Engineering PhD Thesis Defence Title: "Towards Efficient and Practical Network Optimization for Big Data Analytics" By Mr. Hong ZHANG Abstract Scale matters. In the era of big data, the unprecedented growth of data scale is fundamentally transforming the way we make sense of it. With the rapid rise of cloud computing, applications with massive input datasets are scaling out to thousands of machines to efficiently exploit I/O parallelism. These applications cover a wide variety of big data analytics to uncover hidden patterns, unknown correlations, and other useful information from the data. As one of the major challenges introduced by these data-parallel applications, communication among the distributed tasks often results in massive data transfers over the network. To address this problem, we observe continuous efforts in industry to build high capacity, low-latency datacenter networking infrastructure at scale. In the meanwhile, we also observe concentrated efforts in academia to develop efficient network optimization mechanisms for big data analytics. However, as a first-hand experience, we find efficient network optimization profoundly challenging — especially when performed in a practical manner. First, application-aware network scheduling using coflows serves as one important technique to improve application level communication performance. However, existing coflow-based solutions rely on modifying the underlying computing frameworks to identify coflows (i.e., to match the applications with the flows they generate), making them inapplicable to many practical scenarios. Moreover, precise network load balancing is crucial to ensure the network schedule and deliver suitable application performance. Meanwhile, production datacenters operate under various uncertainties such as traffic dynamics, topology asymmetry, and failures. These uncertainties make network load balancing challenging in practice. Can we perform both efficient and practical network optimization for big data analytics? This dissertation describes my research efforts to answer this in the affirmative. First, we propose CODA, a practical application-aware network scheduling framework. CODA makes the first attempt at automatically identifying and scheduling coflows without any framework-level modification. As a result, it serves as one necessary and natural step towards practical network optimization for big data applications. Second, we present Hermes, a resilient load balancing scheme tailored for the dynamic and complex datacenter environment. Hermes gracefully handles various kinds of uncertainties (e.g., traffic dynamics, topology asymmetry, and failures) in a readily-deployable fashion. Date: Monday, 3 December 2018 Time: 2:00pm - 4:00pm Venue: Room 3494 Lifts 25/26 Chairman: Prof. Pingbo Huang (LIFS) Committee Members: Prof. Kai Chen (Supervisor) Prof. Wei Wang Prof. Ke Yi Prof. Jiang Xu (ECE) Prof. Minghua Chen (CUHK) **** ALL are Welcome ****